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Spinal Cord Injury: Developments in Using Stem Cells and  
Specialised Cells in Treating Spinal Cord Injuries
Modinat Olushanu, PhD

ABSTRACT
Spinal cord injury (SCI) is a severely debilitating 
condition that results in irreversible neurological 
deficits and significantly diminishes quality of life. 
Traditionally, treatment has primarily focused on 
symptom management and has offered limited 
functional recovery. Recent advancements in 
regenerative medicine and stem cell research have 
presented new possibilities for SCI patients. This 
review discusses key developments in SCI treatment, 
particularly stem cell transplantation, specialised cells, 
and combinational therapies. Mesenchymal stem cells 
(MSCs), neural stem cells (NSCs), induced pluripotent 
stem cells (iPSCs) and olfactory ensheathing cells 
(OECs) have shown promise in neural repair and 
functional recovery. Additionally, combining stem cell 
therapy with rehabilitation and neurotrophic factors 
enhances the therapeutic potential. However, achieving 
consistent and substantial functional recovery remains 
challenging and requires further research and large-
scale clinical trials. This review underscores the need 
to translate these scientific advancements into clinical 
practice to improve the quality of life of SCI patients.
Keywords: Stem cells, MSCs, NSCs, iPSCs, OECs, 
Biomaterial, Scaffold, SCIs, Neurorehabilitation, 
Specialised cells, Functional recovery

Introduction
According to the World Health Organization (WHO), it 
is estimated that between 250,000 and 500,000 peo-
ple worldwide suffer from SCI annually.1 The preva-
lence of SCI varies widely across different regions and 
populations and is often influenced by factors such as 
traffic accidents, workplace safety, and availability of 
medical care.1,2

SCI damage occurs in the spinal cord, resulting in 
the loss of functions such as mobility or sensation. The 
spinal cord, a vital part of the central nervous system, 
comprises nerve fibres that relay signals between the 
brain and the body.3 Damage to the spinal cord can 
disrupt these signals, causing significant and often 
permanent changes in strength, sensation, and oth-
er functions below the injury site. SCIs can be caused 
by traumatic events, such as motor vehicle accidents, 
sports injuries, falls, and violence, or by nontraumatic 
factors.3,4 SCIs are classified as complete or incomplete 
injuries: a complete injury results in no function below 
the injury level, whereas an incomplete injury pre-
serves some function. The severity and impact of SCI 
are determined by the affected spinal cord level (cervi-
cal, thoracic, lumbar, or sacral).4

SCIs significantly impact individuals, resulting in 
physical, psychosocial, and economic challenges. 

These injuries often lead to the loss of movement and 
sensation, which can result in paralysis, such as tet-
raplegia or paraplegia.5 Physical consequences may 
also include respiratory problems, spasticity, and 
persistent pain. Injuries to the cervical and thoracic 
regions can impede neural pathways, leading to re-
spiratory difficulties such as ventilatory failure and 
pneumonia. Spasticity results in continuous muscle ri-
gidity and hinders mobility, whereas chronic pain can 
manifest as neuropathic, musculoskeletal, or visceral 
discomfort.6–8 

SCI can have a profound impact on an individual’s 
emotional and psychological well-being, often lead-
ing to feelings of depression and anxiety as a result of 
sudden changes in physical capabilities. Furthermore, 
the financial strain caused by high medical expenses 
and loss of employment can exacerbate the challenges 
faced by individuals and their families.9

History of Treating SCI
The treatment of SCIs with stem cells and specialised 
cells can be traced back to early animal studies that 
examined the regenerative capabilities of various stem 
cell types, including MSCs, NSCs, and iPSCs. These 
studies have revealed the potential of these cells to im-
prove motor and sensory functions and facilitate neu-
ral repair. Initial clinical trials conducted in the early 
2000s focused on the safety and feasibility of MSC 
transplantation, demonstrating that MSCs derived 
from sources such as the bone marrow and adipose tis-
sue are safe and can modulate immune responses and 
promote tissue repair.10–13 Advances in iPSC technol-
ogy in the 2010s have enabled the reprogramming of 
somatic cells into pluripotent stem cells, offering new 
avenues for neural repair.14,15 NSCs derived from foetal 
tissues or iPSCs have been tested for their ability to dif-
ferentiate into neurons and glial cells, aiding in neural 
repair and functional recovery.14,16–18

Specialised cell types, such as olfactory ensheathing 
cells (OECs) and stem cell-derived exosomes, have also 
been investigated for their regenerative potential.19–22 
OECs are known for their ability to support axonal 
growth, while exosome therapy offers a cell-free ther-
apeutic approach by carrying neuroprotective and re-
generative factors to the injury site.20,21 

Despite promising results, challenges such as im-
mune rejection, tumorigenesis, and the optimisation of 
cell delivery methods remain.23,24 Recent studies have 
endeavoured to enhance these therapies and establish 
consistent guidelines for their clinical application, 
which could significantly advance the treatment of SCI 
and promote better patient outcomes.25,26
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Stem Cell Transplantation
Mesenchymal Stem Cells (MSCs)
MSCs possess immunomodulatory and regenerative 
properties. Derived from bone marrow, adipose tissue, 
and umbilical cord, MSCs show potential in improv-
ing motor and sensory functions in SCI patients.24,27 
Levi et al. demonstrated the safety and feasibility of 
transplanting 20 million human central nervous sys-
tem stem cells  (HuCNS-SC) into the thoracic spinal 
cord of 12 patients with chronic motor-complete and 
sensory-incomplete SCI in a multi-site phase I/IIa 
clinical trial. The six-year study revealed no severe ad-
verse effects or tumour formation, and while sensory 
improvements were observed in five patients, motor 
function recovery was not detected, emphasising the 
need for further research to enhance cell engraftment 
and integration.28 Sykova et al. illustrated that MSCs 
from various sources have shown promise in treating 
neurodegenerative diseases such as SCI and ALS, ow-
ing to their multilineage differentiation potential and 
immunomodulatory properties.29,30 They release neu-
roprotective cytokines, migrate to lesion sites, and en-
hance neural plasticity, leading to improved function 
in animal models.27,31 Clinical studies have confirmed 
the safety and modest benefits of MSCs in promoting 
neural repair and functional recovery, particularly um-
bilical cord-derived MSCs with high neurotrophic fac-
tor secretion.29,32,33,34 Tahmasebi et al.’s review, reflects 
that although improvements in sensory and bladder 
functions have been noted, the effects on motor func-
tion remain unclear, requiring further research to op-
timise and assess the application of these therapies in 
humans.34

Neural Stem Cells (NSCs)
NSCs can differentiate into neurons, astrocytes, and 
oligodendrocytes, making them suitable for repairing 
neural damage.35–38 Additionally, it has been suggested 
that genetically modified NSCs could overcome certain 
limitations, such as low migration and survival rates, 
thereby enhancing their therapeutic potential.39 Pre-
clinical studies using NSCs derived from fetal tissues 
and iPSCs have shown promising results in promoting 
neurogenesis and functional recovery in animal mod-
els of SCI.18,40–42 However, several challenges persist 
that must be addressed before the clinical applica-
tion of this technology can be realised, including the 
regulation of cell differentiation and proliferation, as 
well as ensuring patient safety.18,43 Further research is 
needed to optimise these therapies and ensure their 
efficacy and safety for potential use in humans.41,42,44

Another technology that has been explored is the 
conversion of human fibroblasts into NSCs using single 
zinc-finger transcription factors, which represents a 
significant advancement and provides deeper insights 
into neural development and potential therapeutic 
applications.45,46 This method allows the generation 
of long-term self-renewable and multipotent NSCs, 
which are similar to control NSCs in terms of their 
characteristics and functionality. Induced NSCs ex-
hibit the capacity to survive, migrate, and differentiate 

into neural phenotypes post-transplantation without 
tumour formation, which is crucial for any therapeu-
tic application.45 However, while this advancement is 
promising, it is important to consider the broader con-
text of SCI treatment and the various approaches being 
explored. For instance, Yu et al. and Pereira et al. elab-
orate on the opportunities presented by NSCs derived 
from iPSCs and their capacity for cell transplantation 
therapy aimed at addressing SCI.47,48 Lu et al. and Ao 
et al. emphasised the survival and integration of NSCs 
in severe SCIs and the potential synergistic effects of 
co-transplanting NSCs with other cell types, such as 
OECs, to promote regeneration and functional recon-
struction.49,50 Furthermore, Kiani et al. indicated the 
potential of employing human-induced neural stem 
cells (hiNSCs) for cell-based therapy in rats with spinal 
cord injury (SCI), as evidenced by the enhanced cell 
viability and locomotor function observed following 
transplantation.51

Induced Pluripotent Stem Cells (iPSCs)
iPSCs are a versatile source of stem cells that can be re-
programmed from somatic cells and differentiated into 
various cell types, including neural stem/progenitor 
cells (NS/PCs), which can be used for SCI treatment.52–54 
Research has demonstrated that iPSCs can survive, 
differentiate, and extend axons over long distances in 
the injured spinal cord, forming synapses with host 
neurons, which are crucial for functional recovery after 
SCI.55,56 Recent studies have focused on preparing for 
first-in-human clinical trials using iPSC-derived neural 
stem/progenitor cells (NS/PCs) for subacute SCI.57,58 
These studies have addressed critical issues such as 
safety, tumourigenesis, and the practical challenges of 
cell preparation and transplantation.54,58

Olfactory Ensheathing Cells (OECs)
OECs have been identified as promising agents in 
treating SCIs because of their unique ability to sup-
port axonal growth and facilitate neural regener-
ation.59,60 These cells, which share characteristics 
with both Schwann cells and astrocytes, can migrate 
within the damaged spinal cord, secrete neurotroph-
ic factors, and potentially carry exogenous genes to 
promote neuronal regeneration.61,62 Olfactory muco-
sa cells have been found to be effective in restoring 
motor function due to their capacity to remyelinate 
and regenerate axons. Furthermore, they express 
neurotrophic factors essential for nerve tissue re-
covery following SCI.63 Additionally, OECs have been 
shown to interact with astrocytes, regulate inflamma-
tory reactions, and contribute to myelination, which 
is a critical process in nerve repair.59

However, there are challenges in the application of 
OECs, such as inconsistency in therapeutic outcomes, 
which may be attributed to the variability in cell pop-
ulations used for transplantation.64 Moreover, while 
OECs have demonstrated neuroprotective and repair 
roles, the mechanisms by which they mediate anti- 
inflammatory effects remain a subject of debate.65 The 
potential of OECs is further complicated by the need 
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for improved purification procedures to achieve their 
full therapeutic potential.64

In summary, OECs offer a multifaceted approach 
to SCI treatment by promoting axonal regeneration, 
myelination, and modulation of the inflammatory re-
sponse. Despite promising evidence, further research 
is required to standardise cell preparations and fully 
understand the mechanisms of OEC-mediated repair to 
optimise their therapeutic application.64,65

Exosomes
Exosome therapy presents a novel cell-free approach 
to treating spinal cord injuries (SCIs) by capitalis-
ing on the intrinsic ability of exosomes to transport 
neuroprotective and regenerative factors to the site 
of injury. Exosomes are extracellular vesicles that fa-
cilitate intercellular communication and possess the 
potential to modify the injured spinal cord’s environ-
ment by delivering bioactive molecules that promote 
neuroprotection and regeneration.20,21,66 Numerous 
studies have demonstrated the therapeutic poten-
tial of exosomes. Zhou et al., in their study, revealed 
that exosomes derived from human placental MSCs 
possess the ability to promote recovery from SCIs by 
stimulating endogenous neurogenesis and improv-
ing locomotor and bladder functions via the MEK/
ERK/CREB signalling pathway.67 In addition, a study 
by Xue et al. showed that human umbilical cord mes-
enchymal stem cell (hUC-MSC)-derived small extra-
cellular vesicles (sEVs) have the potential to repair 
disrupted blood-spinal cord barriers in SCI through 
the regulation of Endothelin-1 and the enhancement 
of tight junction proteins. These findings further sup-
port the idea that sEVs may offer a promising cell-free 
therapeutic strategy for treating SCI.68 Another study 
demonstrated that  exosomes derived from UC-MSCs 
enhanced motor function recovery and reduced in-
flammation by inhibiting the NF-κB/MAPK signalling 
pathway.69 Lee et al. demonstrated that targeted deliv-
ery of MSC-derived nanovesicles (MF-NVs) enhances 
neuroprotection,  anti-inflammation, and angiogene-
sis in SCI treatment, offering an effective cell-free ther-
apeutic approach.70 A study by Mu et al. showed that 
an emergency treatment strategy using MSC-derived 
exosomes encapsulated in fibrin glue resulted in sig-
nificant functional recovery in SCI, suggesting poten-
tial benefits in urinary function recovery.71

Combination Therapies
Combining Different Types of Stem Cells
Recent research has suggested that combining different 
stem cell types may enhance therapeutic outcomes.62  
Co-transplantation of NSCs and MSCs has demonstrat-
ed synergistic effects, resulting in improved motor and 
sensory function. Furthermore, scaffolds and growth 
factors facilitate stem cell transplantation by estab-
lishing a favourable microenvironment that promotes 
tissue regeneration.72–75 Notably, while the advantages 
of employing a combination of stem cells have been 
emphasised, the literature also recognises the intrica-
cy of spinal SCI pathophysiology and the necessity for 

precision medicine approaches. This indicates that the 
efficacy of combined stem cell therapies may be contin-
gent upon customised treatment to the unique features 
of the injury and the patient.24,76,77

Rehabilitation and Neurotrophic Factors
Integrating stem cell transplantation with rehabilita-
tion and neurotrophic factors has yielded encouraging 
outcomes. 

Rehabilitation enhances the effects of cell transplan-
tation by promoting neural plasticity and functional 
recovery. Studies have shown that rehabilitation when 
combined with stem cell transplantation, can lead to 
significant improvements in functional recovery, par-
ticularly when initiated during the chronic phase of 
SCI.78 This synergistic effect is thought to be the result 
of the rehabilitation’s capacity to facilitate neuronal 
plasticity within transplanted stem cells and senso-
rimotor circuits, which is crucial for functional recov-
ery.79 Furthermore, it has been demonstrated that the 
integration of rehabilitation and neural progenitor 
cell (NPC) transplants leads to enhanced functional 
results because rehabilitation promotes the growth of 
host corticospinal axons into grafts.78 This suggests 
that rehabilitation not only supports the integration 
of transplanted cells but also enhances endogenous 
repair mechanisms.

The use of neurotrophic factors, such as neurotro-
phin-3 (NT-3), in conjunction with stem cell therapies, 
has been shown to improve outcomes in patients with 
spinal cord injuries (SCI). The combination of these 
two therapies has demonstrated synergistic effects, 
leading to improved locomotor function and reduced 
SCI pathology.80,81 In particular, the use of neurotroph-
ic factors, such as brain-derived neurotrophic factor 
(BDNF) and glial cell line-derived neurotrophic factor 
(GDNF), in conjunction with stem cell therapies has 
demonstrated the potential to mitigate damage and fa-
cilitate recovery in preclinical models of SCI.80 

In conclusion, evidence suggests that neurotrophic  
factors, including NT-3, can effectively improve 
 outcomes after SCIs when combined with stem cell 
treatments. This joint approach benefits from the neu-
roprotective and regenerative qualities of neurotro-
phins and the extensive therapeutic potential of stem 
cells, presenting a promising strategy for improving 
recovery in SCI.77,80,81

Clinical Trials and Outcomes
Safety and Feasibility
Clinical trials have established the safety and feasi-
bility of stem cell transplantation in SCI. Rong et al. 
study highlights that stem cell transplantation has 
been performed at various stages of SCI and is safe 
and feasible, with the potential to alleviate inflamma-
tion and restore the function of damaged nerve cells.82 
Similarly, Digma et al. reported that early clinical tri-
als demonstrated the safety and feasibility of stem cell 
transplantation in patients with SCI, with observed 
improvements in sensory and motor functions.83 Sil-
vestro et al. also supported these findings, indicating 
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that clinical trials have demonstrated the safety and 
efficacy of stem cell therapy in patients with SCI.82–84 
However, despite these positive indications, chal-
lenges and limitations remain to be addressed. Ago-
sti et al. pointed out that, while stem cell therapies 
show promise, some potential adverse events and 
limitations necessitate careful optimisation of trans-
plantation conditions.85 Moreover, there is a need for 
a deeper understanding of SCI pathophysiology and 
concerns, such as tumourigenicity and immunoge-
nicity, before its widespread clinical adoption. Goel et 
al. and Kan et al. echo the sentiment that more rigor-
ous, large-scale clinical trials are needed to fully un-
derstand the safety, efficacy, and long-term viability 
of stem cell therapies for SCI.85–87

Efficacy
Although the safety of stem cell therapies has been 
well documented, their efficacy remains variable. The 
efficacy of these therapies is less consistent, as clinical 
studies have not always yielded encouraging results, 
and the translation of preclinical success to clinical 
practice has been challenging.88 This discrepancy may 
be due to the heterogeneity of SCI pathophysiology, 
timing of intervention, and types of stem cells used.76 
Moreover, despite the promise shown in animal mod-
els, the limitations of preclinical data and the com-
plexity of translating these findings into successful 
clinical outcomes have been acknowledged.89

Various studies have reported improvements in mo-
tor and sensory functions post-SCI have been reported 
in various studies, particularly with the use of MSCs 
and NSCs. MSCs have been shown to promote repair 
through immunomodulation, neuroprotection, and 
nerve regeneration,24 whereas NSCs have demonstrat-
ed the ability to form synapses with host axons and 
extend new axons from the injury site.79

However, the extent of recovery is variable and de-
pendent on factors such as the type of stem cells used, 
the severity of injury, and the therapeutic approach. 
The promising results from MSC and NSC therapies un-
derscore the potential of stem cell-based interventions 
in SCI treatment, although further research is need-
ed to optimise these therapies and understand their 
mechanisms of action.24,90

Discussion
Recent advancements in SCI treatment, particularly 
in stem cell therapies and combinational approaches, 
offer new hope for improving the quality of life for indi-
viduals with SCI.76,89,91,92 Significant progress has been 
made in developing these therapies, demonstrating 
their potential to repair damaged spinal cord tissues 
and restore lost function.22,93–95 However, ongoing re-
search and clinical trials are crucial to overcome the 
existing challenges and fully realise the potential of 
these therapies. Addressing issues such as immune re-
jection, precise delivery methods, and ensuring stem 
cell treatments’ long-term safety and efficacy remain 
essential.

Overcoming the Challenges
The advent of iPSC technology has mitigated ethical 
concerns, particularly with the use of embryonic stem 
cells (ESCs) and fetal tissues.40 Although stem cells are 
not a complete solution for neural repair, their combi-
nation with other therapies, such as rehabilitation and 
nanotechnology, may enhance their effectiveness.96 

Integrating innovative technologies and compre-
hensive treatment strategies is fundamental to advanc-
ing SCI treatment and achieving substantial functional 
recovery.97–99 Technologies, such as biomaterials, scaf-
folding, and gene editing, are being explored to en-
hance the effectiveness of stem cell therapies. Bioma-
terials can provide a supportive environment for stem 
cells, promoting their survival and integration into the 
host tissues.74,75,99–101

Scaffolding techniques help guide the growth and 
organisation of new cells, whereas gene editing can 
be used to enhance the regenerative capacity of stem 
cells.44,74,93,100 Moreover, integrating complementary 
technologies, such as neurorehabilitation, electrical 
stimulation, and pharmacological treatments, can 
maximise the benefits of stem cell therapy.102,103 Neu-
rorehabilitation can help patients relearn motor skills 
and improve functional outcomes. Electrical stimu-
lation can enhance the activity of spinal circuits and 
promote nerve regeneration.103–105 Pharmacological 
treatments can address inflammation and other sec-
ondary complications, creating a more favourable en-
vironment for stem cell therapy.106

Conclusion
Stem cell therapy for SCI is a promising field with great 
potential for improving patient outcomes. Collabora-
tive efforts among stakeholders, including scientists, 
clinicians, and regulatory bodies, are vital to address 
the current challenges. Advances in stem cell biology 
and regenerative medicine have pushed the boundar-
ies of what is possible. Future studies should focus on 
optimising stem cell therapy protocols to ensure the 
highest safety and efficacy standards. This includes 
determining the best types of stem cells to use, refining 
delivery methods, and establishing optimal timing for 
intervention.
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