

OPEN ACCESS

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

¹Fauji Foundation Hospital, Rawalpindi, Pakistan

²Junior Clinical Fellow, Acute Medicine, Wirral Wigan and Leigh NHS Trust, Wigan, UK

³Speciality Doctor (SAS) General, Stroke and Rehabilitation Medicine, Aneurin Bevan University Health Board, Cwmbran, UK

⁴Senior Clinical Fellow General Medicine and Rehabilitation, Aneurin Bevan University Health Board, Newport, UK

Correspondence to:

Shamsa Kanwal,
drkhankanwal8@gmail.com

Additional material is published online only. To view please visit the journal online.

Cite this as: Kanwal S, Ahsan MT, Khan RN and Khan A. Load Management and Injury Prevention in Elite Athletes: A Narrative Review. Premier Journal of Science 2025;11:100088

DOI: <https://doi.org/10.70389/PJS.100088>

Received: 30 June 2025

Revised: 7 July 2025

Accepted: 8 July 2025

Published: 15 July 2025

Ethical approval: N/a

Consent: N/a

Funding: No industry funding

Conflicts of interest: N/a

Author contribution:

Shamsa Kanwal, Md Tanzim Ahsan, Rab Nawaz Khan and Adil Khan – Conceptualization, Writing – original draft, review and editing

Guarantor: Shamsa Kanwal

Load Management and Injury Prevention in Elite Athletes: A Narrative Review

Shamsa Kanwal¹, Md Tanzim Ahsan², Rab Nawaz Khan³ and Adil Khan⁴

ABSTRACT

This narrative review summarizes recent trends, debates, and evidence concerning load management for injury prevention in elite athletes. Elite athletes encounter substantial training and competition loads that must be meticulously managed to enhance performance and mitigate injury risk. Sports science increasingly emphasizes understanding the relationship between training load, encompassing external physical demands and internal physiological responses, and injury occurrence. Key concepts like the acute:chronic workload ratio (ACWR) propose an optimal load progression “sweet spot,” beyond which rapid increases or chronically elevated loads heighten injury risks. Technological advances, including wearable devices, have facilitated precise load monitoring, enabling coaches to employ structured periodization strategies that balance load variations and recovery periods effectively. Evidence highlights that consistently maintained chronic training loads enhance athletes’ capacity to tolerate high stress, whereas abrupt spikes in acute load significantly increase injury incidence. Recovery plays a critical role, with insufficient sleep notably increasing injury likelihood; adolescent athletes sleeping less than 8 h nightly have a 1.7-fold greater risk of injury. Additionally, individual factors, such as age, sex, and biomechanics, modulate load responses, necessitating personalized management approaches. This review addresses critical issues, including ACWR limitations, the role of wearable technology, periodization methods, return-to-play protocols, and the importance of recovery and biomechanical considerations. Practical guidelines based on current evidence are offered for coaches and clinicians aiming to maintain athletes within optimal load ranges, ensuring both peak performance and minimized injury risk.

Keywords: Acute:Chronic workload ratio, Wearable GPS monitoring, Training periodisation strategies, Return-to-play progression, Sleep-based recovery

Introduction

In elite sports, managing training and competition loads is critical to balancing performance enhancement with injury prevention. Injuries impose a significant burden on athletes and teams, leading to lost training time, missed competitions, and impaired performance.¹ Epidemiological data in professional sports illustrate the challenge: team sports athletes average 6–8 injuries per 1000 h of exposure,² meaning a professional squad can expect multiple injuries each season. Reducing this injury incidence is a top priority for coaches and sports medicine staff, as player availability strongly correlates with team success.³ Indeed, in Olympic athletes, those who completed >80% of planned training weeks were 7 times more likely to

achieve their performance goals,⁴ highlighting that consistent training (and thus injury avoidance) is integral to success.

Training load is broadly defined as the amount of stress placed on an athlete in training and competition. It includes external load—the measurable work completed (e.g., distance run, weight lifted)—and internal load—the athlete’s physiological and perceptual response to that work (e.g., heart rate, blood lactate, rating of perceived exertion (RPE)), as conceptualized in early modeling efforts, such as the Banister fitness-fatigue model.^{5,6} Effective load management requires monitoring both external and internal loads, since two athletes performing the same external work may experience different internal strain. Modern elite sports employ a suite of monitoring tools: wearable GPS units and accelerometers track external outputs like running distance, high-speed efforts, accelerations, impacts, and PlayerLoad metrics, while heart-rate monitors, biochemical markers, and session-RPE scores gauge internal load and fatigue.⁵ Table 1 summarizes common external and internal load monitoring metrics used to quantify training demands and responses in athletes. Elite teams often integrate this data into Athlete Management Systems to flag abnormal load patterns. For instance, a sudden spike in external load (like doubling weekly running distance) or sustained high internal load (e.g., very high session RPEs for moderate training) might prompt adjustments to prevent overload. Conversely, chronically low loads might lead to detraining, reducing tissue tolerance. Thus, finding the “optimal load”—enough to stimulate adaptation and resilience, but not so much to exceed the athlete’s capacity—is a central theme in injury prevention.⁷

Critical Appraisal of Evidence

As a narrative review, this article summarizes findings from selected studies without formal quantitative synthesis or systematic risk-of-bias assessment. Readers should interpret findings acknowledging that narrative reviews inherently carry limitations regarding the critical appraisal of individual study quality.

Acute vs. Chronic Workload and the Acute:Chronic Workload Ratio (ACWR) Concept

A widely applied framework in load management is the relationship between acute load (short-term training) and chronic load (longer-term average). The ACWR compares weekly training load to a rolling average over previous weeks. Ratios that are too high or too low have been associated with increased injury risk, while a “sweet spot” (typically 0.8–1.3) is proposed to minimize it.⁸

Provenance and peer-review:
Unsolicited and externally peer-reviewed
Data availability statement:
N/a

Initial studies supported the model. In elite cricket fast bowlers, large workload spikes (e.g., doubling weekly volume) correlated with significantly higher injury risk.⁹ Hulin et al. showed that ACWRs exceeding ~1.5 predicted greater injury incidence, while lower ratios (<0.8) reflected inadequate preparedness due to deconditioning.^{7,10} Gabbett described this as training “smarter and harder,” advocating progressive overload within tolerable bounds.⁷ Table 2 provides interpretation of ACWR ranges and Injury Risk Interpretation.

The ACWR model quickly became popular among coaches due to its intuitive concept of maintaining athletes within a “sweet spot” to avoid injury-prone workload spikes. International guidelines, including the IOC consensus, recommend its use in monitoring athlete loads.¹¹ In practice, ACWR alerts coaches to large training spikes, prompting program adjustments. However, the ACWR’s widespread adoption has sparked critical debate regarding methodological issues, notably mathematical coupling inherent in its calculation, potentially creating spurious correlations. The choice of calculation window and methods, such as rolling averages or exponentially weighted moving averages (EWMA), also influences results significantly.¹² EWMA, despite being theoretically sounder, is less intuitive and more complex to use. Early ACWR studies often suffered from small sample sizes and retrospective designs, potentially exaggerating their predictive value.¹³

Recent evidence, including a 10-month randomized controlled trial (RCT) in elite youth football, showed no significant reduction in injury or health problems using ACWR-guided load management compared to usual training methods, casting doubt on rigid adherence to ACWR thresholds alone.¹⁴ Systematic reviews confirm that ACWR’s predictive value is inconclusive and context-dependent, influenced by measurement methods and sports-specific conditions. While still a useful heuristic, ACWR should be applied cautiously alongside other metrics, emphasizing gradual load progression to avoid rapid increases.¹⁵ Ultimately, the load–injury relationship appears U- or J-shaped, highlighting that moderate, consistent loads enhance athlete resilience, aligning with the “training injury prevention paradox” that athletes must train both hard and smart.⁷

Although endorsed in practice, including by the IOC,¹¹ the model has faced criticism. Key concerns include mathematical coupling, arbitrary time windows, and inconsistent results across studies. EWMA methods offer improvements but are complex and less intuitive.^{12,13} Recent evidence, including a 10-month RCT, found no injury reduction with ACWR-based load management, challenging its utility as a standalone tool.¹⁴ Systematic reviews suggest its predictive validity is context-dependent and limited by measurement variability.¹⁵ As a heuristic, ACWR remains useful when applied alongside broader monitoring strategies. Importantly, the load–injury relationship appears U- or

Table 1 | Examples of external vs internal load monitoring metrics in athletes

Load Type	Metrics & Tools	Description/Usage
External load	<ul style="list-style-type: none"> Total distance run (meters) High-speed running distance (meters above threshold) Number of sprints, accelerations, decelerations Weight lifted (kg) or volume (sets × reps) Jumps or impacts count PlayerLoad (arbitrary unit from accelerometer) 	Objective measures of work performed. Commonly tracked via GPS devices and inertial sensors, especially in team sports. High values indicate greater mechanical load. For example, distance and sprint counts in soccer, or collision counts in rugby. These inform if an athlete’s weekly work exceeds typical levels.
Internal load	<ul style="list-style-type: none"> Session RPE (session Rating of Perceived Exertion, in AU) Heart-rate-based load (e.g., training impulse (TRIMP) points) Blood lactate concentration (mmol/L) Heart-rate variability/recovery indices Self-reported fatigue, soreness scores 	Reflects physiological and psychological stress response to training. Session RPE (training intensity × duration) is a simple, widely used internal load metric. Heart-rate derived metrics (e.g., Banister’s TRIMP) quantify cardiovascular strain. High internal load for a given external load may signal accumulating fatigue or poor recovery.

Table 2 | ACWR Ranges and injury risk interpretation

ACWR Range	Load Status	Injury Risk	Notes/Source
<0.8	Low acute load relative to chronic (recent taper or drop)	Elevated risk (undertraining effect)—athlete may lose fitness or preparedness, potentially increasing injury risk when load is resumed.	E.g., Extended rest or abrupt off-loading can leave tissues underprepared for subsequent demands.
0.8–1.3	“Sweet spot”—acute load in line with chronic load	Low risk (optimal training load zone)—athlete is training at a load they are adapted to, maximizing fitness gains with minimal injury risk.	Identified in multiple sports (e.g., soccer, rugby) as the zone of greatest resilience when maintained consistently.
1.4–1.5	Moderate-high acute load spike	Caution zone—injury risk begins to rise as acute load approaches 1.5× chronic.	Minor spikes might be managed if athlete has high chronic load capacity, but caution warranted.
>1.5	High acute load spike	High risk (“Danger zone”)—injury risk significantly elevated when acute load >> chronic load.	Rapid increases (e.g., return from off-season or postinjury without ramp-up) consistently linked to injury occurrence if not mitigated.

J-shaped, reinforcing the value of consistent, progressive loading.⁷

Wearable Technology and External Load Monitoring

Wearable technologies, such as GPS trackers and inertial measurement units, have transformed external load monitoring across elite sports. These tools quantify movement metrics—distance, speed, acceleration, impacts, and jumps—enabling coaches to monitor training volume and intensity with precision. Metrics like PlayerLoad, derived from triaxial accelerometers, support real-time micro-monitoring of load relative to training targets.⁵ Exceeding certain load thresholds, such as >1500–2000 PlayerLoad units or very high sprint volumes, has been associated with elevated muscle injury risk.¹⁶ However, athletes with higher chronic workloads display better tolerance to acute spikes, suggesting conditioning buffers risk.¹⁷ Malone et al. demonstrated that well-prepared athletes were less likely to suffer injuries during high-intensity phases.¹⁷

GPS data also highlights patterns preceding injury, informing timely adjustments. Visual dashboards (e.g., Firstbeat, Catapult) offer ACWR-based alerts for workload imbalances (Figure 1).⁸ Still, interpreting these data requires expertise, and technology must be used cautiously to avoid overreliance on external metrics alone.

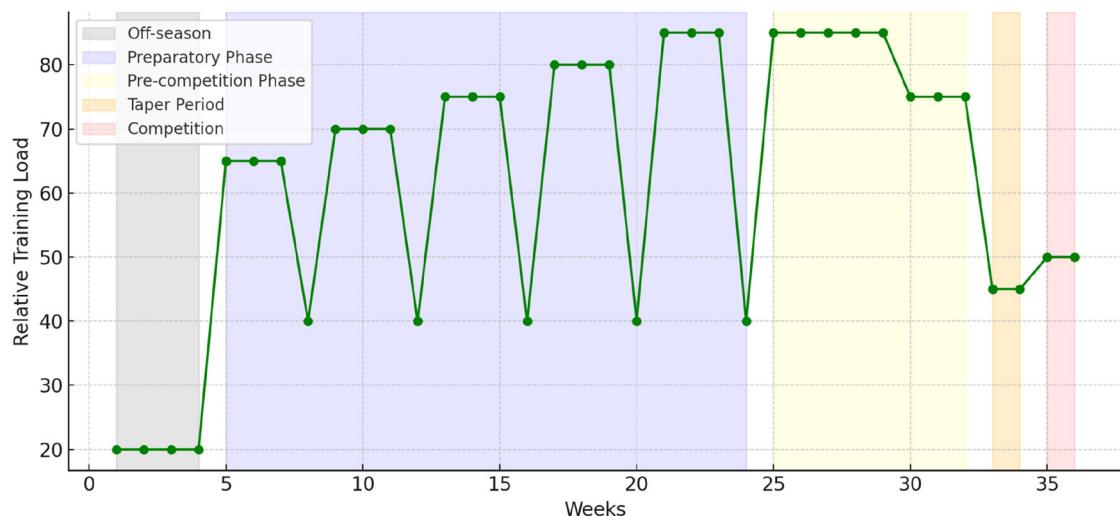
Despite limitations, such as device accuracy and potential neglect of internal load, wearables are integral to modern load management. When used judiciously, they support periodized plans, enabling high-load and recovery variation. Applications extend to diverse sports, from jump monitoring in volleyball to stroke force tracking in swimming and mileage control in distance running, helping mitigate overload-related injuries.

Periodization Strategies for Load Management

Periodization systematically organizes training into macrocycles (annual plans), mesocycles (monthly/weekly blocks), and microcycles (weekly/daily sessions) to optimize performance while preventing injuries.¹⁸ Originating with Matveyev and refined by Bompa,^{19,20} classic periodization includes progressively increasing training volume, shifting to higher

intensity, and culminating with tapering before major events, thus preventing chronic overload and promoting adaptation.²¹

From an injury prevention standpoint, periodization emphasizes gradual progression with planned recovery, often structured as a 3:1 loading cycle, 3 weeks of increasing load followed by a lighter fourth week to mitigate cumulative fatigue. This structured approach has demonstrated efficacy, a 2021 study showed linear periodization improved performance without elevating injury rates in military cadets compared to non-periodized methods.²² Common techniques include tapering (load reduction preceding competition), block periodization (focused intensive blocks with adequate recovery), and undulating periodization (frequent load/intensity variations), each designed to manage training stress effectively over time. Figure 2 presents a simplified conceptual model of how training load is periodized across a season, balancing higher load phases with recovery phases. Proper periodization reduces injury risks linked to training monotony and overload, as variability in load and embedded recovery phases have proven protective against overuse injuries (journals.sagepub.com). For instance, marathon runners typically cycle through endurance, speed/strength phases, and tapering periods to minimize continuous repetitive stress. Team sports implement periodization through player rotation, lighter sessions in congested fixtures, and deliberate mid-season breaks, correlating with reduced injury incidence and enhanced performance (martin-buchheit.net).


Ultimately, individualized (“flexible” or “agile”) periodization is crucial, informed by ongoing athlete monitoring (e.g., fatigue symptoms, heart rate, sleep patterns), allowing timely adjustments. Such structured variability fosters athlete robustness, aligning with Platonov’s emphasis on adequate preparation phases and progressive overload to optimize performance while minimizing injury risks.²³

Return-to-Play (RTP) Load Management

Effective load management is crucial during the RTP phase postinjury, especially given the high recurrence rate of muscle strains and soft-tissue injuries associated with rushed rehabilitation. Modern RTP protocols prioritize gradual load progression with clear objective

Fig 1 | Examples of acute vs. chronic training load status for three athletes, as displayed on a commercial dashboard. Athlete 1 (left) is in the optimal load zone (green) with an ACWR ~1.2, indicating well-balanced recent vs. long-term load. Athlete 3 (right) has a high acute load but low chronic load (red flag), indicating a spike that may elevate injury risk.⁷ Such visual tools help coaches identify athletes who might need load adjustments

Fig 2 | Conceptual illustration of a periodized training load over an annual season. Training load (y-axis) varies across macrocycles: after an off-season (low load), load builds in a preparatory phase (volume focus), then intensity increases in the precompetition phase (with volume tapering slightly). Planned recovery weeks (dips in the curve) are inserted to dissipate fatigue. A taper period before the main competition markedly drops the load (to ~50–60% of peak) to optimize recovery. This pattern helps athletes peak at competition while minimizing injuries from chronic overload. (Adapted from classic periodization models¹)

Table 3 | Example RTP load progression for a lower-limb injury

Phase	Description	Loading Guidelines	Criteria to Progress
Phase 1: Rehabilitation (Controlled Loading)	Initial rehab phase focusing on healing and basic function. Includes physical therapy exercises.	Low load (e.g., <50% of normal training volume). Emphasis on pain-free movement. <i>Example:</i> gentle cycling, pool running, bodyweight exercises.	Pain/swelling controlled, basic strength/flexibility returned. E.g., 5/5 pain-free single-leg squats.
Phase 2: Reconditioning (Graduated Training)	Reintroduce sports-specific activities at submaximal intensity.	Moderate load , building up. Follow gradual progression: increase running distance or training duration by ~10–20% per week. Include modified practice: noncontact drills, half-speed running.	Able to complete moderate sessions without pain or setback. E.g., run 20 min at 70% effort, or complete half training session, next-day OK.
Phase 3: Return to Training (Full-intensity Practice)	Full training with team, but possibly with limited volume or modified work-rest ratios initially.	High load but monitored. Allow at least one rest/recovery day between intense sessions. Reintroduce maximal efforts (sprints, jumps) progressively. Use metrics: e.g., reach 90% max sprint speed, 100% sports-specific agility.	Medical clearance for training. Metrics: strength ~90% of uninjured side, fitness tests near baseline. No adverse reactions in full sessions.
Phase 4: Return to Competition (Monitored initial games)	Return to match play with possible restrictions (e.g., limited minutes initially).	Competitive load. Coach and medical may limit game time in first matches (e.g., 20 min substitute appearance) to avoid sudden full load. Close monitoring of postgame recovery (soreness, swelling).	Successful full-intensity training week. Confidence and no symptoms. Possibly pass sports-specific RTP test battery (e.g., hops, agility, skill execution at game speed).

criteria before athletes fully resume competition. Injured tissues initially have reduced capacity, making immediate return to previous load levels unsafe due to an excessively high ACWR. Rehabilitation thus follows a graded, incremental progression; for instance, a hamstring injury protocol may begin with pain-free jogging, progressively increasing to sprinting and agility drills, each stage incrementally elevating load by approximately 10–30% while carefully monitoring symptoms. General RTP guidelines recommend cautious advancement, ensuring rest days between intensive sessions and achieving key performance benchmarks (e.g., 90% of maximum speed) prior to competition.²⁴

Specific RTP assessments, such as hop tests and strength ratios postanterior cruciate ligament (ACL) injury, further quantify readiness for sports-specific demands. Table 3 shows an example progression framework for returning to play after a lower-limb injury. Research consistently highlights risks associated with premature return: elite Australian footballers notably experienced the highest reinjury rates when returning to competition prematurely, underscoring the biological imperative of allowing sufficient time for tissue healing and fitness recovery.²⁵ Tools like GPS tracking and strength testing provide quantitative metrics

during rehabilitation, ensuring returning athletes approach their preinjury workloads safely.²⁶

Recent models advocate a holistic assessment, exemplified by the Strategic Assessment of Risk and Risk Tolerance,²⁷ integrating clinical evaluations, psychological readiness, and monitored training loads. Such individualized assessments ensure comprehensive athlete readiness prior to return. Ultimately, structured RTP protocols applying periodization and progressive overload principles not only mitigate reinjury risk but also enhance long-term performance outcomes and athlete confidence.²⁸

Sleep, Recovery, and Load Tolerance

Effective load management extends beyond training sessions, crucially encompassing recovery strategies, particularly sleep. Inadequate sleep significantly increases injury risk by impairing neuromuscular coordination, cognitive function, and muscle repair processes, ultimately lowering athletic performance capacity.²⁹ A landmark study found adolescent athletes who slept less than 8 h nightly had a 1.7-fold increased injury risk compared to those who slept adequately, making sleep duration a key injury predictor.³⁰ A systematic review of 45 studies confirmed that partial sleep deprivation reduces endurance, strength, and speed, increasing fatigue perception and injury susceptibility.³¹

Elite athletes often experience sleep disruptions from intense training, travel, and precompetition anxiety.³² Consequently, teams frequently use wearable devices or questionnaires to monitor sleep quality, adjusting training loads accordingly. Ensuring good sleep hygiene, mandated extended sleep periods, and strategic naps have become integral preventive measures.

Additional recovery modalities, including nutrition, hydration, cold-water immersion, compression garments, and psychological stress management, may enhance athletes' load tolerance, although evidence for their effectiveness varies. Periodized recovery strategies, alternating high- and low-load days, help mitigate injury risk. Individual variability necessitates personalized monitoring, with subjective wellness assessments often predicting overload. Ultimately, high-quality sleep and structured recovery are fundamental to effective load management, ensuring athletes sustainably tolerate high chronic loads and highlighting the importance of holistic stress management in injury prevention.

Biomechanical Factors and Individual Differences

Training load is a key, but not isolated, injury risk factor. Intrinsic characteristics, such as biomechanics, sex, age, injury history, and fitness level critically, shape an athlete's response to load. Poor movement mechanics can amplify tissue stress, especially under fatigue. For example, valgus knee alignment during jumping increases ACL injury risk; thus, load management is often paired with neuromuscular and technique training to improve load tolerance.³³

Sex-based differences also affect risk. Female athletes, due to anatomical and neuromuscular factors, have a higher incidence of injuries like ACL tears and

may need tailored strength and conditioning programs to manage plyometric loads safely. Additionally, low energy availability increases their vulnerability to overuse injuries to bones.^{34,35}

Youth athletes require careful regulation due to immature musculoskeletal structures. Guidelines recommend age-appropriate training limits and rest days to reduce overuse injury risk. Load variation, fundamental skill development, and proactive adult oversight are essential. Similarly, training history matters, experienced athletes with high chronic loads better tolerate stress than detrained or novice athletes. Bridging phases postbreak help rebuild load capacity safely.³⁶

Past injuries also reduce load tolerance. Athletes with a history of soft-tissue injuries or surgeries (e.g., ACL reconstruction) need progressive reloading and targeted neuromuscular rehabilitation. Personalized load management, informed by screening data and injury history, allows for tailored progression strategies. For instance, athletes with poor landing mechanics may follow preventive programs like FIFA 11+,³⁷ while those with recurrent strains may have limited high-speed exposure until resilience improves.

In sum, individual and biomechanical differences demand customized load strategies. Modern injury models, like Meeuwisse's,³⁸ highlight injury risk as a dynamic interaction of internal, external, and chance factors. Load must be matched to the athlete's profile, not simply prescribed in uniform quantities.

Current Debates and Future Directions

Load management continues to evolve as a dynamic and multidisciplinary field, shaped by emerging technologies, individualized training paradigms, and critical discourse. One prominent debate centers on the role of predictive injury analytics. Despite the integration of machine learning models that combine training load, wellness indicators, and biomechanical data, their predictive accuracy remains limited. High false-positive rates and poor generalizability persist, largely due to the low incidence and complex, multifactorial nature of sports injuries. Accordingly, a growing consensus among experts favors the surveillance and mitigation of known modifiable risk factors, such as acute load spikes, fatigue, and inadequate recovery over reliance on algorithmic prediction models.³⁹

A parallel discussion concerns the continued use of the ACWR. While some researchers have called for its withdrawal due to inherent statistical coupling and methodological flaws, others acknowledge its practical utility in raising awareness around sudden load increases.¹⁴ A balanced perspective considers ACWR a crude heuristic that may still hold value if applied in conjunction with complementary load metrics and contextualized athlete data. Consequently, alternative models, such as cumulative load indices, dynamic "strain" metrics, and thresholds tailored to individual tolerance, are gaining traction in both research and practice.

Technological advancements further shape the landscape of load monitoring. Sophisticated devices, including real-time muscle oxygenation monitors and

smart garments capable of tracking joint loading or biomechanical fatigue, promise earlier identification of injury risk.⁴⁰ However, the proliferation of such technologies raises valid concerns around data volume, interpretation, and athlete privacy. Simultaneously, more nuanced, demographic-specific strategies are emerging. These include training adjustments aligned with menstrual cycle phases in female athletes, age-appropriate volume control in youth sports, and tailored loading for masters athletes who may experience delayed recovery kinetics.

Increasingly, elite sports are adopting integrative load management frameworks that bring together sports scientists, medical professionals, and technical staff. Structured practices, such as interdisciplinary athlete-monitoring meetings, allow for the synthesis of performance, training, and health data to inform shared decision-making. The objective is to deliver personalized, precision-guided load prescriptions grounded in an athlete's history, capacity, and response patterns. This integrative model supports proactive rather than reactive management, balancing performance goals with long-term athlete availability.⁴¹

A broader philosophical tension persists between optimizing performance and minimizing injury. Critics argue that excessive caution in load modulation may inhibit the training stimulus required for elite adaptation. Yet, evidence increasingly supports that strategic, well-managed training enables athletes to train harder over time by reducing the incidence of time-loss injuries. This debate is particularly visible in professional team sports, where public scrutiny of rest protocols (often referred to as "load management") can conflict with stakeholder expectations and commercial pressures.

In summary, the future of load management lies in the synthesis of individualized analytics, technological innovation, and interdisciplinary collaboration. While a universal model remains elusive, the foundational question "how much is too much?" continues to anchor both research and applied practice. Progress will depend not only on refining metrics and models but also on embedding them within athlete-centered, context-sensitive performance systems.

Conclusion

Effective load management is fundamental to injury prevention and sustained performance in elite sports. Athletes must train with sufficient intensity to stimulate adaptation, yet without exceeding their individual capacity for recovery. This delicate balance requires a multifactorial approach that integrates training metrics, recovery strategies, and individual athlete characteristics. Periodization frameworks provide structured variation, while wearable technologies and monitoring tools support timely adjustments. However, no single metric or model suffices in isolation; the real strength lies in combining insights from biomechanics, psychology, nutrition, and sleep to build a comprehensive profile of load tolerance. Recognizing

the heterogeneity in how athletes respond to training, shaped by factors such as age, sex, prior injury, and genetic predisposition, is essential to personalizing interventions. Contemporary debates highlight the need for refinement in predictive models and increased collaboration across disciplines. Moving forward, the goal is not merely to prevent injury but also to create environments where athletes can train consistently, adapt safely, and perform at their highest level over time. Load management, when implemented intelligently and collaboratively, becomes not just a protective mechanism but also a performance enabler. As evidence continues to grow, it reinforces a simple but enduring principle: managing training load effectively is not optional; it is central to the success and longevity of every elite athlete.

References

- Ekstrand J, Spreco A, Bengtsson H, Bahr R. Injury rates decreased in men's professional football: an 18-year prospective cohort study of almost 12 000 injuries sustained during 1.8 million hours of play. *Br J Sports Med.* 2021;55(19):1084–92. <https://doi.org/10.1136/bjsports-2020-103159>
- Buchheit M, McHugh D. Elite football injury risk explained: translating 1000-hour injury rates into expected weekly injury counts. *Training.* 2022;174(16.5):5.
- López-Valenciano A, Ruiz-Pérez I, García-Gómez A, Vera-García FJ, Croix MDS, Myer GD, et al. Epidemiology of injuries in professional football: a systematic review and meta-analysis. *Br J Sports Med.* 2020;54(12):711–8. <https://doi.org/10.1136/bjsports-2018-099577>
- Raysmith BP, Drew MK. Performance success or failure is influenced by weeks lost to injury and illness in elite Australian track and field athletes: a 5-year prospective study. *J Sci Med Sport.* 2016;19(10):778–83. <https://doi.org/10.1016/j.jams.2015.12.515>
- Power CJ, Fox JL, Dalbo VJ, Scanlan AT. External and internal load variables encountered during training and games in female basketball players according to playing level and playing position: a systematic review. *Sports Med Open.* 2022;8(1):107. <https://doi.org/10.1186/s40798-022-00498-9>
- Banister EW, Calvert TW, Savage MV, Bach T. A systems model of training for athletic performance. *Aust J Sports Med.* 1975;7(3):57–61.
- Gabbett TJ. The training–injury prevention paradox: should athletes be training smarter and harder? *Br J Sports Med.* 2016;50(5):273–80. <https://doi.org/10.1136/bjsports-2015-095788>
- Interpreting acute vs chronic training load – a Firstbeat Sports feature. Firstbeat. Available from: <https://www.firstbeat.com/en/blog/interpreting-acute-vs-chronic-training-load-a-firstbeat-sports-feature/>
- Clubb J. Acute:chronic workloads and rehabilitation: a case study. Global Perf Insights; 2016. Available from: <https://www.globalperformanceinsights.com/post/acute-chronic-workloads-and-rehabilitation-a-case-study>
- Hulin BT, Gabbett TJ, Blanch P, Chapman P, Bailey D, Orchard JW. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. *Br J Sports Med.* 2014;48(8):708–12. <https://doi.org/10.1136/bjsports-2013-092524>
- The acute:chronic workload ratio – science or religion? Sports Injury Bulletin. Available from: <https://www.sportsinjurybulletin.com/improve/the-acutechronic-workload-ratio-science-or-religion>
- Bowen L, Gross AS, Gimpel M, Bruce-Low S, Li FX. Spikes in acute:chronic workload ratio (ACWR) associated with a 5–7 times greater injury rate in English Premier League football players: a comprehensive 3-year study. *Br J Sports Med.* 2020;54(12):731–8. <https://doi.org/10.1136/bjsports-2018-099422>
- Gdovin JR, Galloway R, Tomasiello LS, Seabolt M, Booker R. External training load monitoring and the impact on training load management in collegiate male soccer players. *J Strength Cond Res.* 2023;37(7):1434. <https://doi.org/10.1519/JSC.00000000000004080>

14 Dalen-Lorentsen T, Bjørneboe J, Clarsen B, Vagle M, Fagerland MW, Andersen TE. Does load management using the acute:chronic workload ratio prevent health problems? A cluster randomised trial of 482 elite youth footballers of both sexes. *Br J Sports Med.* 2021;55(2):108–14. <https://doi.org/10.1136/bjsports-2020-103003>

15 Load management. Physiopedia. Available from: https://www.physio-pedia.com/Load_Management

16 Condon TA, Eckard TG, Aguilar AJ, Frank BS, Padua DA, Wikstrom EA. Lower extremity movement quality and the internal training load response of male collegiate soccer athletes. *J Athl Train.* 2021;56(9):973–9. <https://doi.org/10.4085/1062-6050-0322.20>

17 Malone S, Roe M, Doran DA, Gabbett TJ, Collins K. High chronic training loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic football. *J Sci Med Sport.* 2017;20(3):250–4. <https://doi.org/10.1016/j.jams.2016.08.005>

18 Adams A. Periodization training simplified: a strategic guide | NASM Blog. Available from: <https://blog.nasm.org/periodization-training-simplified>

19 Matveev LP. Fundamentals of sports training. Progress Pub; 1981. Available from: <https://cir.nii.ac.jp/crid/1130282271776624896>

20 Bompa TO, Haff G. Periodization: theory and methodology of training. 5th ed. Champaign, IL: Human Kinetics; 2009.

21 Naseri MBA. A theoretical comparison between periodization and non-periodized training. *J Sports Physiol Athl Cond.* 2024;4(13):16–28.

22 Heard C, Willcox M, Falvo M, Blatt M, Helmer D. Effects of linear periodization training on performance gains and injury prevention in a garrisoned military unit. *J Mil Veterans Health.* 2020;28(3):23–34.

23 Impellizzeri FM, Menaspà P, Coutts AJ, Kalkhoven J, Menaspà MJ. Training load and its role in injury prevention, part I: back to the future. *J Athl Train.* 2020;55(9):885–92. <https://doi.org/10.4085/1062-6050-500-19>

24 Admin R. Returning to sport after a foot or ankle injury. Runner's Tribe; 2025. Available from: <https://runnerstribe.com/news/returning-to-sport-after-a-foot-or-ankle-injury/>

25 Carey DL, Blanch P, Ong KL, Crossley KM, Crow J, Morris ME. Training loads and injury risk in Australian football—differing acute:chronic workload ratios influence match injury risk. *Br J Sports Med.* 2017;51(16):1215–20. <https://doi.org/10.1136/bjsports-2016-096309>

26 Drew MK, Raysmith BP, Charlton PC. Injuries impair the chance of successful performance by sportspeople: a systematic review. *Br J Sports Med.* 2017;51(16):1209–14. <https://doi.org/10.1136/bjsports-2016-096731>

27 Shrier I. Strategic Assessment of Risk and Risk Tolerance (STARRT) framework for return-to-play decision-making. *Br J Sports Med.* 2015;49(20):1311–5. <https://doi.org/10.1136/bjsports-2014-094569>

28 Maestroni L, Read P, Bishop C, Turner A. Strength and power training in rehabilitation: underpinning principles and practical strategies to return athletes to high performance. *Sports Med.* 2020;50(2):239–52. <https://doi.org/10.1007/s40279-019-01195-6>

29 Klügl M, Shrier I, McBain K, Shultz R, Meeuwisse WH, Garza D, et al. The prevention of sport injury: An analysis of 12 000 published manuscripts. *Clin J Sport Med.* 2010;20(6):407–12. <https://doi.org/10.1097/JSM.0b013e3181f4a99c>

30 Milewski MD, Skaggs DL, Bishop GA, Pace JL, Ibrahim DA, Wren TA, et al. Chronic lack of sleep is associated with increased sports injuries in adolescent athletes. *J Pediatr Orthop.* 2014;34(2):129–33. <https://doi.org/10.1097/BPO.0000000000000151>

31 Kong Y, Yu B, Guan G, Wang Y, He H. Effects of sleep deprivation on sports performance and perceived exertion in athletes and non-athletes: a systematic review and meta-analysis. *Front Physiol.* 2025;16:1544286. <https://doi.org/10.3389/fphys.2025.1544286>

32 Walsh NP, Halson SL, Sargent C, Roach GD, Nédélec M, Gupta L, et al. Sleep and the athlete: narrative review and 2021 expert consensus recommendations. *Br J Sports Med.* 2021;55(7):356–68. <https://doi.org/10.1136/bjsports-2020-102025>

33 Franco D, Ambrosio L, Za P, Maltese G, Russo F, Vadalà G, et al. Effective prevention and rehabilitation strategies to mitigate non-contact anterior cruciate ligament injuries: a narrative review. *Appl Sci.* 2024;14(20):9330. <https://doi.org/10.3390/app14209330>

34 DeHaven KE, Lintner DM. Athletic injuries: comparison by age, sport, and gender. *Am J Sports Med.* 1986;14(3):218–24. <https://doi.org/10.1177/036354658601400307>

35 Understanding the differences between male and female athletes in the treatment of sports injuries. AO Foundation; 2024. Available from: <https://www.aofoundation.org/who-we-are/about-ao/news/2024/ao-sports-athletes-in-the-treatment-of-sports-injuries>

36 Kraemer WJ, Fleck SJ. Strength training for young athletes. Champaign, IL: Human Kinetics; 2005. Available from: https://books.google.com/books?hl=en&lr=&id=yT_FZ1NX6gIC

37 Sharifatpour R, Abbasí H, Alizadeh MH, Abedinzaheh S, Machado S. Effect of 12 weeks of modified FIFA 11+ training on functional factors of male beach soccer players: a randomized controlled trial. *Cuad Psicol Deporte.* 2024;24(3):265–80. <https://doi.org/10.6018/cpd.584601>

38 Meeuwisse WH, Tyreman H, Hagel B, Emery C. A dynamic model of etiology in sport injury: The recursive nature of risk and causation. *Clin J Sport Med.* 2007;17(3):215–9. <https://doi.org/10.1097/JSM.0b013e3180592a48>

39 Drew MK, Finch CF. The relationship between training load and injury, illness and soreness: a systematic and literature review. *Sports Med.* 2016;46(6):861–83. <https://doi.org/10.1007/s40279-015-0459-8>

40 Kakhi K, JagatheeSaperumal SK, Khosravi A, Alizadehsani R, Acharya UR. Fatigue monitoring using wearables and AI: trends, challenges, and future opportunities. arXiv; 2024. <https://doi.org/10.1101/2024.01.10.584611>

41 Roa JA. The science of peak sports performance: a guide to the assessment, control, and monitoring of training; 2024. Available from: <https://books.google.com/books?id=W24IEQAAQBAJ>