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ABSTRACT
Current digital identity systems face significant challeng-
es in privacy, security, user control, and performance. 
This research proposes a novel blockchain-powered ap-
proach that integrates neural network technologies to 
address fundamental limitations of centralized identity 
management. By leveraging decentralized architecture 
and biometric authentication, we present a transforma-
tive solution to digital identity verification that enhances 
user privacy, security, and autonomy while mitigating sys-
temic risks in both centralized and decentralized frame-
works. Empirical evaluation demonstrates authentication 
accuracy of up to 97.20% and average login latency of 
1.069 seconds, validating the system’s effectiveness and 
responsiveness on standard consumer hardware.
Keywords: Neural-network FaceNet512 authentication, 
Proof-of-authority consensus, Hybrid IPFS-blockchain 
storage, Self-sovereign identity architecture, Guardian- 
assisted identity recovery

Introduction
Digital identity systems are technological frameworks 
that enable individuals to authenticate and verify their 
identity in digital environments. These systems have 
become increasingly critical in our interconnected 
world, serving as the foundation for accessing services, 
conducting transactions, and maintaining personal se-
curity across online platforms.1

The exponential growth of digital interactions has 
exposed critical vulnerabilities in traditional identi-
ty management systems. Centralized digital identity 
frameworks are increasingly compromised by struc-
tural weaknesses that fundamentally undermine user 
privacy and data security.2 These centralized systems 
suffer from being single points of failure, as their data-
bases are vulnerable to comprehensive data breaches. 
Users have minimal autonomy over their personal in-
formation and must rely on third-party dependencies 
to protect and manage their sensitive data. The lack of 
transparency in data access mechanisms and potential 
misuse, combined with high security risks from con-
centrated data storage, make these systems attractive 
targets for cybercriminals.3,4

Decentralized identity verification represents a par-
adigm shift that addresses these fundamental limita-
tions by distributing control back to individual users, 
eliminating single points of vulnerability, providing 
transparent and immutable identity management, 
enhancing privacy through cryptographic techniques, 
and enabling user-controlled data sharing.

While several Self-Sovereign Identity (SSI) frame-
works such as Hyperledger Indy/Sovrin and uPort have 
advanced decentralized identity management,5,6 our 

 proposed architecture introduces specific technical 
modifications to address existing limitations. In con-
trast to Sovrin’s permissioned blockchain and uPort’s 
reliance on Ethereum, our system incorporates neural 
network-based biometric verification. This integra-
tion enables identity verification methods that ex-
tend beyond conventional cryptographic techniques 
used in current SSI implementations.7,8 Additionally, 
our design adopts a hybrid storage strategy combin-
ing blockchain with the InterPlanetary File System  
(IPFS),9 supporting scalability while preserving data 
integrity. Collectively, these architectural components 
form a decentralized identity solution that aims to miti-
gate the systemic weaknesses observed in both central-
ized and first-generation decentralized systems.10

Related Works 
Standards and Established Frameworks
The W3C Decentralized Identifiers (DIDs) specification 
provides a framework for decentralized identity man-
agement which enables verifiable and self-sovereign 
digital identities. These are also complemented with 
Verifiable Credentials (VCs) that provide cryptograph-
ically secure digital credentials.11 However, these rely 
primarily on cryptographic proofs and digital signa-
tures while lacking integrated biometric mechanisms.

Recent years have seen the launch of large-scale 
SSI pilots such as the European Blockchain Services 
Infrastructure (EBSI),12 a European Union initiative  
piloting verifiable credentials and decentralized  
identifiers across multiple member states. EBSI demon-
strates credential interoperability and regulatory 
compliance at a cross-border scale, actively involving 
universities, service providers, and government agen-
cies. Similarly, the IDunion13 consortium in Germany 
establishes an open, federated SSI network focusing 
on privacy-preserving mechanisms and real-world 
deployment. Both initiatives illustrate the maturity 
and challenges of SSI in practical, regulated environ-
ments, providing valuable benchmarks for this work

Hyperledger Indy provides a permissioned block-
chain designed for identity management and Aries 
offers protocol implementations for credential ex-
change.14 These frameworks provide credential verifi-
cation flows but lack native biometric integration and 
often require external authentication systems. 

Microsoft ION (Identity Overlay Network) imple-
ments DIDs on top of Bitcoin’s blockchain and also 
involves IPFS for off-chain storage.5 However, it re-
lies on the energy-intensive Proof of Work consensus  
that Bitcoin uses and also does not explore biometric 
authentication or other consensus mechanisms like 
Proof of Authority.15
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In contrast, permissioned blockchains have ex-
perimented with alternative consensus protocols. 
Istanbul Byzantine Fault Tolerance (IBFT)16 and Ten-
dermint17 are two mechanisms designed to deliver 
strong consistency and rapid transaction finality in 
trusted consortium contexts. IBFT has been adopted in  
enterprise-ledgers (e.g., Quorum), combining crash 
and Byzantine fault tolerance with performance im-
provements. Tendermint, widely used in inter-chain 
credential solutions, supports BFT guarantees and in-
stant finality, further strengthening the scalability and 
fault tolerance of decentralized identity systems.

Biometric-Blockchain Integration Systems
Recent approaches explore the combination of bio-
metrics with blockchain architecture. Yasumura  
et  al.7 proposed Bio-SSI for example, that uses  
biometric cryptosystems specifically including fuzzy 
extractors, which use simpler matching algorithms  
in comparison to deep learning models such as  
FaceNet512. Moreover, Bio-SSI stores encrypted VCs 
and helper data on public or private clouds which do 
not have decentralized audit logs and transparency 
guarantees of a hybrid IPFS -blockchain storage.

Another notable implementation is the Deep 
Feed-Forward Neural Network-Based Biometric Authen-
tication System (DFNN) utilizing a biometric fingerprint 
image.8 The usage of fingerprints may not be as us-
er-friendly as facial recognition which is highly porta-
ble to modern devices (laptops, phones) equipped with 
cameras. Moreover, the DFNN biometric system does  
not explore hybrid blockchain IPFS storage and its  
benefits in comparison to a traditional database.10

Outside of conventional fuzzy extractors or crypto-
systems, latest developments include:

•	 Cancelable Biometrics, irreversibly converting tem-
plates with matching performance maintained and 
allowing simple revocation or re-issuance, essen-
tial for GDPR compliance. 

•	 Homomorphic Encryption, enabling biometric 
matching on encrypted data, facilitating priva-
cy-preserving verification on cloud or distributed 
environments.

•	 Zero-Knowledge Proofs, which allow users to 
demonstrate ownership of a biometric feature 
without divulging raw information. These have 
been incorporated into blockchain-based authen-
tication, and they enable robust auditability and 
unlinkability.

Collectively, these strategies address fundamental 
regulatory and technical needs, irreversibility, un-
linkability, and auditability, that are necessary for 
implementing contemporary, privacy-focused identity 
frameworks at scale.18,19

Background and Theoretical Framework
Evolution of Digital Identity Management
Traditional digital identity systems have evolved from 
basic authentication mechanisms to sophisticated 

multi-factor verification processes. However, the pre-
dominant centralized approach continues to present 
significant vulnerabilities affecting both individual 
privacy and systematic security. These centralized 
systems remain susceptible to data breaches, un-
authorized access, and identity theft, while offering  
users minimal control over their personal informa-
tion.5 Centralized databases storing sensitive personal 
information have become attractive targets for cyber-
criminals, leading to frequent and devastating data 
breaches.10

Blockchain Technology and Identity Management
Blockchain technology has emerged as a transforma-
tive advancement in digital record-keeping, provid-
ing a decentralized, cryptographically secured digital 
ledger that records transactions across a distributed 
network.4 Its fundamental characteristics of immuta-
bility, transparency, and resistance to unauthorized 
modifications make it particularly suitable for identity 
management applications. The development of Decen-
tralized Identifiers (DIDs) and Self-Sovereign Identity 
(SSI) frameworks has strengthened blockchain-based 
identity management systems, enabling individuals to 
maintain complete control over their digital identities 
while ensuring interoperability across different plat-
forms and services.8,9

Neural Network for Biometric Authentication
The integration of neural networks with blockchain 
technology represents a significant advancement in 
biometric authentication systems. Convolutional Neu-
ral Networks (CNNs) have proven particularly effective 
in processing and extracting features from images like 
in medical imaging fields as well as facial features  
for authentication purposes.8,20 The system employs 
these neural networks to process biometric data and 
extract unique feature vectors, which are then encrypt-
ed and stored securely off-chain using the InterPlane-
tary File System (IPFS). 

Recent advancements in federated learning have 
enabled decentralized training of machine learning 
models on data across multiple devices, ensuring that 
sensitive data remains on the user’s device, signifi-
cantly reducing privacy risks. This approach leverages  
hybrid CNN-RNN architectures to capture spatial and 
temporal features of user behavior, achieving high ac-
curacy while maintaining privacy compliance.21,22 

Privacy-Preserving Biometric Matching
Fully Homomorphic Encryption (FHE) has emerged as 
a promising solution for privacy-preserving biometric 
matching. Recent implementations, such as Adap-
tive Multi-Biometric Fusion with FHE (AMB-FHE), re-
duce ciphertext size significantly while maintaining  
high security standards.23 These protocols enable en-
crypted biometric templates to be matched without 
exposing sensitive data, ensuring compliance with 
modern privacy regulations, and hence, have scope in 
the implementation of our system.
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Zero-Knowledge Proof-Based Identity Verification
Zero-Knowledge Proofs (ZKPs) are revolutionizing  
decentralized identity systems by enabling verification 
of claims without revealing underlying data. For exam-
ple, users can prove they meet specific criteria, such as 
age or citizenship, without disclosing personal details 
like names or passport number.24

Motivation and Objective
The exponential growth of digital interactions de-
mands a robust, secure, and user-centric identity 
management approach. Current centralized systems 
are increasingly inadequate in protecting individu-
al privacy and ensuring data security.4 Critical issues  
with existing solutions include massive data breach-
es compromising millions of user records such as the 
Equifax data breach of 2017,25 unauthorized data  
sharing by third parties accessing and monetizing per-
sonal information, limited user autonomy with mini-
mal control over personal digital identities, and high 
operational costs from inefficient centralized verifica-
tion processes.4

The integration of blockchain's decentralized archi-
tecture with pattern recognition through neural net-
works creates a secure identity verification mechanism 
that ensures data security, provides accurate authen-
tication and reduces fraud potential. Our key research 
objectives include designing a fully decentralized 
identity management system, implementing neural 
network-based biometric authentication, developing 
a privacy-preserving verification mechanism, creat-
ing a scalable interoperable identity framework, and 
demonstrating a practical alternative to centralized 
identity systems.

Methods
Decentralizing digital identity involves taking away all 
centralized storage of private identifiers, documents, 
biometric data and other sensitive information. All 
access logs to anyone’s digital identity must also be 

public, transparent and receive appropriate permis-
sions first. A key factor is for users to maintain control 
over their data and who has access to it, ensuring that 
their personal information is not distributed without 
consent.5 Security mechanisms to protect against ma-
licious actors are implemented through cryptograph-
ic hashes and current standard encryption methods. 
This is primarily for the content identifiers of biomet-
ric data stored in the IPFS for authentication but can 
also apply to other sensitive data if and when added. 

Using the proposed digital identity, a user can the-
oretically authenticate himself at any KYC (know your 
customer) requirement, login or registration. The trust 
of each digital identity entirely falls on the validators of 
the Blockchain, which will be verified organizations or 
government agencies using a Proof of Authority (PoA) 
consensus mechanism. 

Authentication is done through biometric scans like 
face recognition or fingerprint scans which is the so-
called “key” to their digital identity. In the proposal, 
this biometric data in combination with Public Key In-
frastructure (PKI) should suffice for linking the real per-
son with their digital identity.26 The overall architecture 
combines all the security, privacy, decentralization and 
authentication components to implement the project.

System Architecture
Figure 1 illustrates several components and roles of the 
architecture as explained further below.

1.	 Stakeholders
•  �  Users: These are the end user systems who use 

the system either for authentication (login/sig-
nup) or sensitive data management.

•    �Enterprises: These are corporations or websites 
that rely on the system for user onboarding, au-
thentication, SSO (single sign on) or KYC (know 
your customer) through verification of govern-
ment records.25

•    �Trusted validator nodes: Set of trusted validators 
that validate the transactions in PoA. Validators 
can include government agencies, banks or  
institutions

2.	 User Layer
It is the entry point for identity authentication and 
users directly interact with the layer to register or 
sign in. It consists of:
•    �Biometric collection: Captures fingerprint, fa-

cial, iris, or other biometric features from the 
user. This is done during the first registration 
on the system as well as subsequent sign-in 
processes by other third party websites/corpo-
rations for on-boarding, SSOs, or KYCs.

•    �Pre-processing and feature extraction: This pro-
cess converts the biometric information into 
feature vectors by applying pre-processing al-
gorithms like de-noising or edge detection. The 
pre-processed information is then fed into neu-
ral networks which extract the feature vectors of 
interest.Fig 1 | System architecture
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•    �User interface and authentication mechanism: 
There are two UIs: one is embedded directly into 
third party websites for users to safely log in and 
the other is a dashboard to manage identity ac-
cesses and control sensitive document access.

•    �Encryption and secure transmission: Ensures 
Biometric data is safely encrypted before being 
stored in the IPFS Layer.

•    �Consent and identity linking: This links the 
biometric information with an identity record, 
guaranteeing user consent as well as adherence 
to privacy standards.

•    �Onboarding and first sign-in: Users will first  
register into our system in order to access its 
features. During this first registration, they will  
have to validate their identity with trusted nodes 
using a government-issued identity document. 

3.	 Blockchain Layer:
The Blockchain layer serves as a foundation for pro-
viding decentralization, security, transparency and 
immutability—all of which are crucial for an identi-
ty management system. It uses Smart Contracts to 
automate identity verification, authentication, and 
access control processes, ensuring compliance and 
reducing human error. 

The system uses PoA consensus mechanism, 
where trusted validators confirm transactions. 
This ensures energy-efficient and rapid consensus 
without compromising security.27 All transactions 
are recorded on the blockchain, resulting in an im-
mutable audit trail that guarantees transparency 
and accountability.

This layer not only helps in enhancing the secu-
rity of user identities but also enables regulatory 
compliance and user trust in the identity manage-
ment system.28,29

a.	 IPFS Layer:
The IPFS (InterPlanetary File System) Layer is 
responsible for secure, decentralized storage of 
identity-related data,30 including biometric feature 
vectors and sensitive documents. This mechanism 
assigns a unique cryptographic hash to each stored 
file, making it immutable and easily verifiable.31 To 
maintain privacy and security, sensitive biometric 
data is encrypted before being stored in IPFS, mak-
ing sure only authorized entities can access it. Ad-
ditionally, only hashes (references) of stored files 
are recorded on the blockchain, preventing raw 
exposure of biometric data while preserving the au-
ditability and integrity of records. 

IPFS offers decentralized, content-addressable 
storage without long-term data availability guaran-
tees. To solve for this, our system embraces a hybrid 
pinning approach. Biometric information is pinned 
using self-hosted IPFS nodes, providing high-fidel-
ity control and free from third-party infrastructure 
dependency. Furthermore, certain records are re-
dundantly pinned using commercial services like 
Pinata or Web3 storage for enhanced availability 
and geographic redundancy.32

This two-layer approach provides high availabili-
ty while addressing IPFS’s documented persistence 
shortcomings. A strict data retention policy is en-
forced: identity records are kept for at least five 
years or until a revocation request is logged. When 
revocation occurs, unpinning is initiated (subject 
to legal or regulatory considerations), and all pin/
unpin actions are audit-logged.33

b.	 Neuro-Secure Authentication Mechanism
The neuro-secure authentication mechanism or 
N-SAM is a hybrid biometric identity verification 
framework34 that integrates biometric authentica-
tion, deep learning based neural networks, smart 
contracts and encryption systems to seamlessly au-
thenticate users while ensuring a tamper resistant, 
privacy preserving platform, enhancing both secu-
rity and trust. 

a.	 Biometric data preprocessing & feature extraction:
At the heart of N-SAM is its biometric processing 
system that draws out distinctive biometric fea-
tures of users, mainly facial recognition for ver-
ification. When a user tries to sign-in, the face 
image is taken and preprocessed for enhanced 
recognition accuracy. 

The system extracts facial embeddings using 
pretrained models accessed via the DeepFace 
library,35 which provides a unified interface to 
several state-of-the art face recognition models. 
Specifically, we used three pretrained models: 
FaceNet, FaceNet512, and ArcFace.

Both FaceNet variants are based on the In-
ceptionResNetV1 architecture and trained us-
ing triplet loss, which optimizes the embedding 
space to bring same-identity pairs closer while 
pushing apart different-identity pairs, FaceN-
et512 differs in embedding size, offering high-
er-dimensional representations for potentially 
improved separability.36

ArcFace,37 on the other hand, is built on a  
ResNet100 backbone and uses Additive Angular 
Margin Loss which enforces angular margins be-
tween classes in the embedding space. This results 
in high inter-class separability and intra-class com-
pactness—making ArcFace particularly effective for 
face verification tasks.

Tables 1 and 2 depicts the resultant analysis of 
these models, while Figure 2 displays the Receiver 
Operating Characteristic (ROC) curves across all folds.

To evaluate model performance in a standard-
ized setting, we benchmarked all three models on 
the Labeled Faces in the Wild (LFW)38 dataset us-
ing the standard evaluation protocol. We utilized 
the official LFW “10_folds” test set obtained via 
scikit-learn’s fetch_lfw_pairs function,39 which 
provides 6,000 pre-defined pairs (3,000 genu-
ine and 3,000 impostor pairs) derived from the 
dataset’s 13,233 images of 5,749 individuals. 
This standardized test set ensures reproducibili-
ty and enables direct comparison with published 
results. Following the standard LFW protocol, we 
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Table 1 | LFW evaluation analysis
Model Best Threshold Accuracy (Mean ± SD) FAR (Mean ± SD) FRR (Mean ± SD) AUC (Mean ± SD) EER (Mean ± SD)

FaceNet 0.6063 0.9682 ± 0.0054 0.0178 ± 0.0039 0.0180 ± 0.0038 0.9927 ± 0.0031 0.0179 ± 0.0038

FaceNet512 0.5788 0.9765 ± 0.0043 0.0128 ± 0.0029 0.0130 ± 0.0032 0.9964 ± 0.0016 0.0129 ± 0.0031

ArcFace 0.7137 0.9697 ± 0.0051 0.0182 ± 0.0029 0.0180 ± 0.0029 0.9935 ± 0.0025 0.0181 ± 0.0029

Table 2 | BUPT evaluation analysis
Model Best Threshold Accuracy (Mean ± SD) FAR (Mean ± SD) FRR (Mean ± SD) AUC (Mean ± SD) EER (Mean ± SD)

FaceNet 0.6823 0.9415 ± 0.0083 0.0315 ± 0.0049 0.0325 ± 0.0049 0.9802 ± 0.0051 0.0320 ± 0.0048

FaceNet512 0.6646 0.9542 ± 0.0099 0.0252 ± 0.0057 0.0253 ± 0.0058 0.9883 ± 0.0039 0.0253 ± 0.0057

ArcFace 0.7907 0.9342 ± 0.0116 0.0358 ± 0.0047 0.0358 ± 0.0049 0.9771 ± 0.0068 0.0358 ± 0.0048

Fig 2 | ROC Curves for FaceNet, ArcFace, FaceNet512 and the mean comparison of the three

employed 10-fold cross-validation with the official 
fold splits, where each fold contains 600 pairs 
(300 genuine, 300 impostor). Subjects may appear 
in multiple pairs across folds, as per the standard 
LFW evaluation design, genuine pairs are drawn 

from the subset of 1,680 individuals with multiple 
images, while impostor pairs utilize the full set of 
5,749 individuals. For each fold, cosine similarity 
between the face embeddings was computed for 
every pair.
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To find the optimal operational point, we per-
formed a threshold sweeping analysis. This involved 
iterating through 1000 thresholds, ranging from the 
minimum to the maximum computed distance. At 
each threshold, we classified pairs as a match or non-
match and calculated the accuracy, False Acceptance 
Rate (FAR), and False Rejection Rate (FRR). The opti-
mal threshold was selected as the one that achieved 
the highest accuracy. This rigorous method ensures 
that the reported metrics are based on the most effec-
tive performance of each model. 

To complement the LFW evaluation and assess mod-
el robustness on more challenging data, we addition-
ally evaluated all three models on the BUPT-CBFace 
dataset, which contains 41,667 identities with 12 
images per identity, representing a significantly larger 
and more diverse set than LFW’s 5,749 identities. Due 
to the dataset’s size, we sampled 6,000 pairs (3,000 
genuine and 3,000 impostor) following the same dis-
tribution as our LFW evaluation. Genuine pairs were 
created by randomly selecting different images from 
the same identity, while impostor pairs were formed 
from images of different identities. The sampled sub-
set maintains the dataset’s inherent diversity in pose, 
expression, and imaging conditions, providing a more 
challenging evaluation scenario.

We applied the identical evaluation protocol used for 
LFW: 10-fold cross-validation with 600 pairs per fold, 
cosine similarity computation, and the same thresh-
old sweeping analysis across 1,000 thresholds to de-
termine optimal operational points. This consistent 
methodology enables direct comparison between the 
two datasets and demonstrates model generalization 
beyond the relatively constrained LFW benchmark. As 
expected, all models showed reduced performance on 
BUPT-CBFace (Table 2), confirming its increased dif-
ficulty while demonstrating that our approach main-
tains robust performance across diverse conditions.

Tables 1 and 2 show the analysis results for LFW and 
BUPT-CBFace respectively, while Figure 2 compares 
the Receiver Operating Characteristic (ROC) curves. To 
illustrate threshold effects, we plot True Positive Rate 
(TPR) versus False Positive Rate (FPR) across thresh-
olds for each model. The top two and bottom-left 
subplots show ROC curves for the 5 cross-validation 
folds of FaceNet, ArcFace, and FaceNet512, with AUC 
reported per fold. The bottom-right subplot compares 
the mean ROC curves of all models, with shaded ar-
eas indicating standard deviations and AUC reflecting 
overall performance.

Based on Table 1, FaceNet512 offers the best over-
all performance with the highest accuracy (97.65% ± 
0.43%), making it the most reliable among the three at 
its optimal threshold of 0.5788.

b.	 Decentralized identity verification:
To ensure decentralization and privacy, the  
Content Identifier (CID) of the biometric data 
stored in the IPFS layer is encrypted and stored 
on-chain. The CID is linked with the User’s De-
centralized Identifier (DID), enabling secure 

and efficient mapping between users and their 
biometric data.

During a sign-in procedure, the following steps 
occur:

•    �The user’s DID (which, in general blockchain 
systems, would be a wallet address) is cap-
tured along with the newly acquired biomet-
ric facial data.

•    �The biometric data undergoes the same pre-
processing and feature extraction steps de-
scribed earlier to generate feature vectors.

•    �The CID is used to retrieve the original bio-
metric features from the IPFS, which are de-
crypted after user confirmation.

•    �A cosine similarity is performed between the 
stored feature vectors and the newly extract-
ed feature vectors.

•    �If the similarity score exceeds a predefined 
authentication threshold, the user is success-
fully authenticated.

c.	 Blockchain Implementation:
Using a distributed ledger technology, block-
chain in this case, allows us to decentralize all 
identity information and makes access trans-
parent. 

Smart Contracts are defined to maintain access 
control, permission requests and overall user 
control on their data. A smart contract is a piece 
of code that is executed in a secure environment 
enabling the user to control digital assets.9 It can 
include various methods to automatically execute 
the terms of the agreement between participants 
of the chain thus removing the need for an unnec-
essary intermediary or delays. In this particular 
project, the smart contract provides functions for 
users to register their decentralized identifier on 
the blockchain, user authentication off-chain, ac-
cess control and a logging/audit trail. The smart 
contract functions, parameters and estimated gas 
costs involved are provided in the supplementary 
material as Table S1.

User registration will generate a unique identity 
token after storing the hashed biometric data secure-
ly off-chain. Access control is maintained through 
grantAccess, revokeAccess and checkAccess methods 
as shown in Table S1. These methods are able to con-
trol whether a third entity can access a certain user’s  
data for some time frame. This access can also be re-
voked or checked at any time so that the user always 
maintains full transparent control over their personal 
information.

All accesses will also be logged with the logAccess 
method and its corresponding emitted event. This 
maintains a public record of which entity accessed 
what data, further encouraging blockchain principles 
of transparency.

Every function within the smart contract operates at 
O(1) complexity, meaning gas costs remain constant 
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regardless of user base growth. Thus, transaction fees 
remain predictable with great scalability potential.40 
However, it’s important to note that while the contract 
logic scales efficiently, overall system throughput still 
faces limitations based on the network capacity and 
deployment architecture. 

The consensus mechanism used in this project is 
Proof of Authority (PoA) due to the vulnerability of dig-
ital identity and its implications if scaled. Nodes on the 
blockchain are only validated by trusted organizations, 
likely government agencies or large reputed groups. 
Validators are always a fixed set of authorized nodes 
and are called sealers. 

The PoA consensus mechanism was selected for 
this system due to its optimal balance of security, 
efficiency, and trust requirements. Unlike Proof of 
Stake (PoS) which requires significant cryptocurren-
cy holdings or Delegated Proof of Stake (DPoS) which 
introduces democratic but potentially vulnerable 
election processes, PoA leverages the reputation of 
validators whose identities are known and vetted.27,41 
This approach is particularly suitable for digital iden-
tity management where trust and accountability are 
paramount.  Additionally, PoA provides enhanced 
security against 51% attacks since compromising 
the network would require controlling the majority of 
trusted validator nodes rather than simply accumu-
lating computational power or stake.27 

As a result, the validators are chosen to be large, 
trusted organizations or government agencies whose 
identities are extremely difficult to reproduce. This cat-
egory of validators inherently mitigates the danger of 
validator collusion or a Sybil attack, further enhanced 
by promoting diversity in chosen nodes. A system im-
plementation on a national scale would accommodate 
this validator criteria. Selection can be done through 
invites based on established credibility and technical 
capabilities. Besides that, the organization must pos-
sess significant resources to contribute to the network 
and also technical capabilities considering the work-
ings of a blockchain system.

d.	 Security Mechanism
As biometric information is stored off-chain, all 
identifiers linking to it must be securely encrypt-
ed using symmetric encryption. This includes 
biometric or identity-related documents where 
Advanced Encryption Standard (AES) can be 
implemented for efficiency before being stored 
on the IPFS. This prevents malicious actors from 
accessing the information even if the IPFS link is 
exposed.42 The encryption key is further secured 
through Elliptic Curve Cryptography (ECC), a 
method of asymmetric encryption.43 This en-
sures only the intended user can decrypt the 
data, essentially, the original owner. 

Third party access is made possible through 
re-encrypting the key using the third party’s pub-
lic key and correspondingly updating the smart  
contract. Thus the intended entity and only 
them can retrieve the original document. To en-
force data control for the user, access revocation 

is also enabled on chain through the Smart Con-
tract. This is implemented by removing or updat-
ing encrypted keys which ensure that previously 
granted access becomes nullified and prevents 
unauthorized access beyond that point.43 

Deep learning techniques have also been re-
searched to assist in identifying forgery, malicious 
tampering and other modifications which could po-
tentially be incorporated in the future.44 
e.	 Recovery Mechanisms

The potential loss of biometric keys must be ad-
dressed for long term viability of the system and 
overall user friendliness. This challenge is tack-
led through a guardian assisted recovery mech-
anism, which allows users to designate trusted 
individuals or entities as guardians for their dig-
ital identity. The addGuardian function in the 
smart contract shown in Table S1 are relevant 
here. Users can assign guardians through the 
addGuardian function enables a guardian to re-
set a user’s identity as a secure fallback option. 

f.		 GDPR and Ethics
The General Data Protection Regulation (GDPR) 
presents a significant challenge for block-
chain-based identity systems, particularly con-
cerning the right to erasure (Article 17). This 
right allows individuals to request the deletion 
of their personal data, which conflicts with 
blockchain’s fundamental principle of immu-
tability.45 Our architecture attempts to address 
this challenge through the following measures 
through off-chain IPFS storage of biometric data 
and one-way hashing.

As mandated by GDPR, a Data Protection 
Impact Assessment (DPIA)46 would be essen-
tial prior to any production deployment of this 
system. The DPIA process enables systematic 
identification and mitigation of risks to data 
subjects, especially regarding storage, process-
ing, and potential misuse of biometric data. For 
architectures of this kind, DPIA documentation 
should include privacy risk assessments, techni-
cal and organizational controls, and records of 
residual risk, prepared before onboarding users 
and updated during substantial system chang-
es. Referencing DPIA requirements here ensures 
regulatory accountability and supports legal 
defensibility for biometric-storage and creden-
tial-management activities, although a formal 
DPIA is not prepared or submitted as part of this 
work.

One of the concrete technical methods to mit-
igate this issue is through encrypted revocation 
registries. This is implemented with an off-chain 
encrypted registry maintaining erasure requests 
and corresponding cryptographic proof. On invok-
ing their right to erasure, the system generates a 
revocation certificate that must be validated by PoA 
validators and is stored in the registry.

Additionally, chameleon hashes47 can be pro-
posed for on-chain identity records instead of  
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standard cryptographic hashes. These trapdoor 
hash functions allow authorized validators to se-
lectively update hash values referencing biometric 
records, for example by substituting pointers to 
deleted data with standardized “erased” markers 
in compliance with GDPR erasure requests. Impor-
tantly, chameleon hashing achieves a controlled 
and auditable form of mutability: only those parties 
possessing the trapdoor key (typically trusted vali-
dators) can perform rewrites, and all such modifica-
tions are recorded in on-chain logs. This approach 
does not compromise the overall immutability and 
integrity of the blockchain ledger; the underlying 
chain remains append-only, and all changes are 
traceable and non-repudiable. By enabling legally 
mandated data modifications without undermining 
the core principles of distributed consensus and au-
ditability, chameleon hashes reconcile the tension 
between regulatory compliance (e.g., GDPR Article 
17) and the immutability required by permissioned 
blockchains. 

However, it’s important to acknowledge the lim-
itations of this approach. While the actual data can 
be deleted from IPFS, the hashes (CIDs) stored on 
the blockchain remain immutable. This creates a 
persistent link, albeit encrypted, to the original 
data location. Achieving complete erasure in a de-
centralized system remains challenging, as data 
may be replicated across multiple nodes.

Biometric data misuse is a significant ethical 
concern. This is mitigated by strict validator criteria 
based on reputation, credibility and dependency 
on public opinion. These nodes are generally gov-
ernment agencies or large trusted organizations, so 
the danger of data misuse is limited.48

g.	 Demographic Bias in Face Recognition:
Face recognition models, including FaceN-
et512, can exhibit demographic differentials, 
leading to uneven performance across age, gen-
der, and ethnic groups. While our current sys-
tem uses the LFW dataset for benchmarking, we 
acknowledge this limitation for real-world de-
ployment. Future mitigation strategies include:

•    �Diverse and Balanced Datasets: Train models on 
more demographically representative datasets 
to ensure equitable performance.

•    �Multimodal Biometrics: Integrate alternative au-
thentication methods (e.g., fingerprint, iris, voice) 
to provide fallback options for users dispro
portionately affected by facial recognition bias.

•    �Fairness-Aware Thresholding: Implement adap-
tive thresholds to minimize unequal false ac-
ceptance/rejection rates across demographic 
groups.

•    �Fairness Audits and Metrics: Conduct indepen-
dent audits using fairness metrics to monitor 
and correct demographic disparities.

These measures collectively ensure that the sys-
tem remains ethical, inclusive, and responsible, 

addressing both privacy and fairness challenges 
especially in the case of demographic bias.
h.	 Formal Security Analysis using STRIDE Framework

Using the STRIDE framework, we can analyze 
the system’s security against various threats.

•    �Spoofing: Template inversion attacks can be mit-
igated through one-way feature extraction with 
the neural networks. The FaceNet512 model 
embeddings cannot be reverse-engineered to 
reconstruct the original data.36 The high accu-
racy with low FAR results show resistance to 
spoofing attempts. 

•    �Tampering: Blockchain immutability prevents 
modifying identity records and the IPFS imple-
mentation ensures data integrity through cryp-
tographic hashes. 

•    �Repudiation: The logAccess function ensures 
that all authentication attempts are logged on-
chain, creating an immutable audit trail. These 
events provide evidence of access requests and 
grants.

•    �Information Disclosure: Biometric templates are 
encrypted using AES before IPFS storage, with 
keys further encrypted with ECC. Only hashed 
CIDs are stored on-chain, not raw biometric 
data. 

•    �Denial of Service: The PoA consensus limits 
validator nodes to only reputable and trusted 
entities, reducing DoS attack vectors. Moreover, 
IPFS is a distributed storage which inherently 
prevents single points of failure and the smart 
contract is optimized to O(1) complexity, main-
taining consistent performance under load. 

•    �Elevation of Privilege: The guardian recovery 
system includes multi-signature requirements 
preventing unauthorized escalation. PoA val-
idators are public, trusted and reputable orga-
nizations, mitigating Sybil attacks and validator 
collusion through reputation based selection. 

Results and Discussion
The proposed Neuro-Secure Blockchain identity man-
agement system brings together decentralization of 
digital identity alongside biometric authentication to 
address limitations of traditional systems. Compared 
to centralized architectures which are vulnerable to 
data breaches and identity theft,2 this model ensures 
identity records are distributed across a blockchain 
network and biometric data is stored in encrypted and 
hashed form.

The reliance on third-party providers is removed and 
transfers complete control over identity verification and 
access permission to the data owner. Blockchain intro-
duces computational overhead but this approach min-
imizes on-chain storage using IPFS for document and 
biometric data storage. Thus, a hybrid model for storage 
optimizes operational and computational costs.43 

Security analysis of the smart contract was done  
using Mythril, a smart contract verification tool  
that uses Bytecode analysis to detect vulnerabilities 
and assigns severity levels to each.49 This analysis  
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returned no vulnerabilities as further explained within 
Appendix A of the supplementary material. 

Quantitative Evaluation and Comparative Analysis
This section presents a comparative evaluation between 
the proposed decentralized biometric authentication 
system and traditional centralized approaches. Key 
metrics such as False Acceptance Rate (FAR), False Re-
jection Rate (FRR), end-to-end authentication latency, 
and storage overhead are examined. Centralized system 
benchmarks are drawn from reported values in existing 
literature, while the decentralized system's values are 
based on tests conducted on a standard consumer-grade 
machine. 

Comparison with Centralized Biometric Systems
Table 3 depicts the differences between FaceNet512 
and other biometric systems based on FAR, FRR and 
the dataset used. The results in Table 3 indicate that 
the proposed decentralized system using FaceNet512 
delivers competitive performance when compared to 
centralized biometric systems. With a FAR of  1.5%, it 
demonstrates reliable accuracy and aligns well with, 
the benchmarks set by traditional approaches. 

Storage Cost Comparison with PKIs
Table 4 shows the comparison between centralized 
PKI and the decentralized model which highlights the 
cost-efficiency and scalability advantages of the decen-
tralized biometric system.

With significantly lower storage costs, no compliance 
audit overhead, and native support for geographic re-
dundancy via IPFS, the decentralized model demon-
strates strong potential as a lightweight and scalable 
alternative to traditional PKI-based solutions.50–53 

Table 5 provides a high-level architectural compari-
son of our proposed system with existing state-of-the-
art SSI frameworks, highlighting differences in DID/VC 
standards, privacy, biometric support, scalability, stor-
age, governance, and interoperability.5,7,14

Scalability Evaluation
End-to-end authentication latency was measured on 
consumer hardware (8GB RAM, Intel i5 Processor) 

and averaged 4.028s for registration and 1.069s for 
verification, including biometric processing and IPFS 
operations. These registration processes involved face 
capture, embedding generation, encryption and IPFS 
upload. The verification process involved face capture, 
embedding generation, IPFS fetch, decryption and 
comparison.  

A scalability evaluation was conducted on a  
7-validator PoA testnet deployed across separate in-
stances on a local network. The experiment processed 
22,677 identity transactions and achieved 31.5 TPS 
(Transactions per Second) average throughput with 
44.79 TPS peak performance and 99.61% success rate 
at 5-second block intervals.

Table 5 | Architectural comparison with other frameworks
Feature Hyperledger Indy/Sovrin Microsoft ION BIO-SSI Our System

DID/VC Partial (AnonCreds, ZKPs) Full (W3C VC, DID) Partial to full support with biometric 
extensions

Full (W3C VC, DID, IPFS)

Privacy High (Pairwise DIDs, ZKPs) High (Selective Disclosure) High (with encryption, privacy-
preserving matching)

High (biometrics + AES, ECC)

Biometric Support Low Medium (ZKP-based, no on-device) High (NN-based verification) High (NN templates, privacy-preserving)

Scalability Medium (permissioned) High (public, permissionless) High (public, permissionless) High (hybrid IPFS/PoA)

Storage On-chain credential refs, 
some off-chain

Off-chain encrypted anchors Hybrid: biometric data encrypted and 
stored off-chain, blockchain anchor

Hybrid: IPFS (biometrics), blockchain 
hashes

Governance Consortium-based (Linux 
Foundation)

Public open network Consortium/permissioned PoA with trusted validators

Interoperability Medium High (W3C compliant) Medium High (W3C compliant)

Table 3 | Quantitative comparisons with centralized 
systems
Research 
Paper

System/ 
Technique

Dataset Used FAR 
(%)

FRR 
(%)

[54] Gabor-LBP Newly collected 
(indoor office) 

0.28 8.5 

[54] Modified  
Gabor-LBP

Newly collected 
(indoor office) 

0.0 5.0 

[55] CNN-based room 
security system 

Facial dataset 
(CNN model) 

26.67 9.33 

[56] Various 
algorithms (IJB-A 
benchmark) 

IARPA Janus 
Benchmark–A 
(IJB-A) 

1.0 3.9 

This 
Paper

FaceNet512 LFW 1.5 1.5

Table 4 | Cost comparison table
Metric Centralized PKI Decentralized Model

Storage Cost/
User/Month

$4.20-$8.50 $0.008-$0.02

Compliance Audits $10k+/year Audit-free architecture

Geographic 
Redundancy

30% cost 
premium

Built-in via IPFS

Scalability 
Threshold

50k users @ 
$182k/yr

1M users @ $80/month
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Block propagation analysis across validators showed 
average latency of 103 ms with 95th percentile at 119 
ms. Five failure scenarios tested network resilience; 
single validator failures caused minimal impact (8% 
performance reduction, 12s recovery), minority failures  
(3/7 validators) reduced throughput by 28% with 35s 
recovery. Network partitions and cascading failures 
severely impacted performance (65–85% reduction, 
up to 145s recovery), while Byzantine faults showed  
28% performance impact with maintained consensus. 

Storage growth on-chain is 0.58 MB per 1,000 
transactions, and the storage growth off-chain 
(IPFS) is approximately 2170 bytes/user considering  
FaceNet512 embedding sizes and additional encryp-
tion metadata.36

Strategic Implementation Framework and Protocol 
Integration Plan
A hybrid implementation strategy allows concurrent 
operation of traditional identity systems and decen-
tralized mechanisms during the transition period.3 
Based on the blockchain implementation principles 
described in our research, the recommended imple-
mentation timeline encompasses these phases:

1.	 Initial validation period (0–6 months): Controlled 
deployment within a limited user cohort (e.g.,  
internal development teams) enables testing of  
biometric credential issuance, selective disclosure 
protocols, and middleware integration with exist-
ing authentication frameworks.57 Findings from 
this phase inform protocol refinements before 
broader implementation.

2.	 Transitional implementation (6–18 months): Ex-
panded deployment across diverse user segments 
while maintaining conventional authentication  
alternatives. Integration middleware facilitates 
standardized workflows (e.g., OpenID Connect 
(OIDC) token generation via blockchain ver-
ification).22 This phase emphasizes usability  
assessment and gradual introduction of Verifiable 
Credentials for specific processes.

3.	 Expanded deployment (18–36 months): Integra-
tion with external partner systems and third-party  
applications. Authentication policies may desig-
nate DID-based mechanisms as primary verifica-
tion protocols. Systems begin implementing decen-
tralized trust frameworks and Proof of Authority  
(PoA) validator nodes as fundamental identity  
components.21

4.	 Comprehensive integration (36+ months): Decen-
tralized authentication becomes the predominant 
verification methodology. Legacy systems remain 
accessible through protocol conversion interfaces 
for backward compatibility but undergo systematic 
deprecation.4 This phased implementation strategy 
minimizes operational disruption while enabling 
iterative enhancements. 

Conclusion
The Neuro-Secure blockchain-based identity manage-
ment system could represent a significant advancement  

in digital identity verification, addressing critical vul-
nerabilities in centralized identity systems. By inte-
grating blockchain technology with neural network  
biometric authentication, the research provides a se-
cure, privacy-preserving alternative that shifts control of 
digital identities from centralized authorities to individ-
ual users.

The Neuro-Secure Digital Identity Management 
system aligns with emerging trends in Self-Sovereign 
Identity (SSI), Web3 decentralization principles, and 
zero-trust security models,24 offering a comprehensive 
solution to critical challenges in digital identity veri-
fication. The system demonstrates how blockchain 
and advanced AI can effectively secure personal iden-
tity data, offering enhanced privacy and user control 
through decentralized verification mechanisms. Key 
contributions include a novel approach to biometric 
authentication that preserves individual sovereignty 
while providing security against identity theft and un-
authorized data access.

Practical implications span multiple sectors, includ-
ing financial services, healthcare, government, and 
education, showcasing the potential for widespread 
adoption of decentralized identity management.58 

Future research directions include focusing on ad-
vancing machine learning models for biometric au-
thentication, exploring enhanced zero-knowledge 
proof implementations, developing multimodal bio-
metric authentication techniques, and developing 
cross-blockchain interoperability. Ultimately, the Neu-
ro-Secure system represents a pivotal step towards a 
digital ecosystem where individuals have genuine con-
trol over their personal data, combining technological 
innovation with a fundamental respect for personal 
privacy.
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Table S1 | Smart contract functions
Function name Description Parameters Returns Events Emitted Estimated Gas Cost (gwei)

Register 
Identity

Registers a user’s decentralized 
identity by Storing a hashed biometric.

User (address), 
_biometric Hash (bytes32

None None ~66668 gas 133.336

Update Identity Updates the stored biometric hash for 
a user.

New Biometric Hash 
(bytes32)

None Identity Updated (address_user) ~30617 gas 61.234

Verify Identity Verifies if the given biometric hash 
matches the stored hash.

_user (address),
_biometric Hash (bytes32)

Bool (true if 
access is valid)

Identity Verified (address_user, 
bool success)

~28868 gas 57.736

Grant Access Grants temporary access to an entity 
for identity verification.

requester (address),
_duration (uint256)

None Access Granted (address_
user,address_requester, uint256 
expirationTime)

~71393 gas 142.786

Revoke Access Revokes access before expiration. _requester (address) None Access Revoked (address_user, 
address_requester)

~29677 gas 59.354

Check Access Checks if a requester has valid access. _user (address),
_requester (address)

bool (true if 
access is valid)

None ~38825 gas 77.765

Log Access Logs authentication attempts on-chain. _user (address),
_requester (address),
_timestamp (uint256), 
_success (bool)

None Access Logged (address _user, 
address_requester, uint256_
timestamp, bool success)

~27758 gas 55.516

Add Guardian Allows a user to assign a guardian for 
identity recovery.

_guardian (address) None Guardian Added (address_user, 
address_guardian)

~29364 gas 57.728

Remove 
Guardian

Removes a guardian assigned for 
recovery.

_guardian(address) None Guardian Removed (address_
user, address_guardian)

~29242 gas 58.484

aGas estimates obtained using ethers.js with Ganache local block chain at 2 gwei gas price (April2025).
1 Gwei = 10–9 ETH; actual costs may vary based on network conditions.

Appendix A 
Smart contract security verification outputs

A formal analysis was conducted on the proposed 
smart contract using Mythril v0.24.8 on the solidity 
version 0.8.29. The analysis was completed success-
fully and returned no security issues detected. Access 
control was verified and confirmed that only identity 
owners can modify their data, guardian functions are 
restricted to assigned guardians and time-bounded 
permissions are properly enforced.

Input validation was verified as all address param-
eters were checked for zero address, biometric hashes  

are non-Zero and access grant durations are with in 
acceptable limits. All state changes were verified to be 
atomic and consistent and properly logged via events 
without any unnecessary storage operations.

Moreover, the smart contract code is thoroughly 
documented using Solidity’s Natural Language Speci-
fication Format (NatSpec) that includes descriptions of 
contract purpose, function behaviors, input parameters 
and expected return values. Additionally, Scribble as-
sertions were incorporated to express key security prop-
erties and invariants within the contract thus enabling 
automated verification tools to check for correctness.

Suplementary Material
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Listing A1 | Solidity codes Nippet with NatSpec and scribble assertions
/**

*@notice Registers a new decentralized identity using a biometric hash

*@dev Creates a new identity entry for the caller with the provided biometric hash

*@param_biometric Hash The cryptographic hash of the user’s biometric data

*@custom: security The biometric hash should be generated using a secure hashing algorithm

*@custom: privacy The original biometric data should never be stored or transmitted
*
*Requirements:

*-Callermustnotalreadyhaveanidentityregistered

*-Biometrichashmustnotbezero
*
*Effects:

*-Creates new identity with exists=true and provided hash

*-No events emitted for privacy(registration is implicit)

*/

///#if_succeeds identities[msg.sender].exists==true

///#if_succeeds identities[msg.sender].biometric Hash==_biometric Hash {

///#if_succeeds identities[msg.sender].guardian==address(0) function register 
Identity(bytes32 _biometric Hash) public {

///#require !identities[msg.sender].exists

///#require _biometric Hash!=bytes32(0)

require(!identities[msg.sender].exists, “Identity already registered”); require(_biometric 
Hash != bytes32(0), “Invalid biometric hash”);

User Identity storage new Identity=identities[msg.sender]; new Identity.biometric Hash = 
_biometric Hash; new Identity.exists = true;

}
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