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ABSTRACT
The concept of a laser blaster turning an enemy
into a cloud of vapor may seem purely fictional, but
the science that inspires this idea has real-world
applications. Strong, focused lasers can indeed melt,
vaporize, and ionize nearly all forms of matter. The
highly energetic and dynamic characteristics of ionized
gases, or plasmas, have been exploited to address
many technical challenges that humanity faces today.
Presented here is a brief review of the physics behind
lasers and the plasmas they can generate, followed by
several applications of laser-produced plasmas that are
critical for the future of our environment, technology,
and energy. Using lasers to ionize materials has proven
useful in measuring and remediating contamination,
manufacturing advanced computer chips, and
performing groundbreaking research in fusion energy.
Keywords: Laser-produced plasmas, Environmental
remediation, Extreme ultraviolet lithography, Inertial
confinement  fusion, Laser-induced breakdown
spectroscopy

Introduction
The invention of the laser has opened a broad avenue of
scientific research and industrial applications ranging
from fundamental physics, material processing,' med-
icine,” dentistry,” and communication systems.” Lasers
possess a refined ability to deliver enormous amounts
of photon energy to miniscule targets in a short period.
One significant area where these properties are cru-
cial is in the generation of plasmas, a highly energetic
state of matter. Plasmas contain the charged particles
of ions and unbound electrons which exhibit diverse
properties. This review article will cover the fundamen-
tal concepts of laser-produced plasmas (LPP) and the
forefronts of their applications such as environmental
monitoring’ and remediation,® the commercial produc-
tion of today’s most advanced semiconductors,” and
the effort to understand and harness controlled nucle-
ar fusion.®

In addition to being relevant in the critical areas
of environment, economy, and energy, the applica-
tions selected for this review display distinct regimes
of plasma dynamics. Each application is presented
here in order of increasing plasma temperature. The
relative complexity of each application also increases
with the engineering of a higher-temperature plasma,
providing a view of the technological range of the field
of LPP. While this is by no means a comprehensive set
of the applications of LPP, the review intends to high-
light some of the most advanced and currently relevant
use cases. Pollution and contamination of air, water,
and soil are issues faced by nearly all industrialized
countries. The rise of artificial intelligence has placed
increased demand on highly capable semiconductor

chips. The ever-growing energy needs of modern so-
cieties necessitate a breakthrough in producing clean,
carbon-free energy. The plasmas produced by intense
laser radiation play a role in addressing all of these
challenges.

Fundamental Physics of Lasers and Plasmas
From the common red laser pointer a child might play
with to the powerful invisible beams capable of down-
ing a drone, lasers are an inherently quantum phenom-
enon. The theoretical framework that underpins the
operation of lasers was first predicted by Albert Ein-
stein’s quantum theory of radiation.” Light is described
as massless, wavelike particles called photons carrying
energy E = hf, where h is the universal Planck’s con-
stant and f'is the frequency of light such that A = ¢/f is
the wavelength of the photon where c is the speed of
light in vacuum. A photon of a given wavelength thus
has the energy Ephoton = hc/A. The discrete energy of a
photon can be absorbed and emitted by electrons tran-
sitioning between different energetic states and also
by molecules transitioning between vibrational states.
These energetic transitions are quantized to specific
values due to the atomic or molecular parameters.
Lasers rely on stimulated emission, where a photon
incident on an electron in an already excited energy
state E,, has a probability of causing the electron to
descend into a lower energy state E, , releasing the

Low®
energy as an additional photon E | - =E, - E  with

Low
an identical wavelength and direction as the incident
photon.'® If these two photons continue to propagate
through a medium with the same excited particles, a
so-called gain medium, they will harvest more photons
and form a laser beam as shown in Figure 1A. The dis-
tinct properties of lasers are outlined in Table 1. The
population of excited states depletes as the beam prop-
agates through it, so the gain medium must be pumped
with energy using high voltages or flash lamps depend-
ing on the type of medium and the targeted lasing tran-
sition. The first laser was built in 1960 from a ruby rod
pumped with flash lamps to emit a visible red beam."
Now many laser infrastructures exist at a variety of
wavelengths, from the microwave and infrared to vis-
ible and ultraviolet. Extremely high power levels are
reached by triggering a short pulse through a gain me-
dium that is highly saturated with excited states.
Generating a plasma from neutral matter involves
rapid and intense heating of the target. When any light
encounters matter, some percentage of the photons are
absorbed, exciting the electrons into higher energetic
states, while the remaining photons are either transmit-
ted or reflected. The relative fraction for each of these
processes depends on the material’s properties and
the light’s wavelength and intensity. When the energy
absorbed by an atom exceeds the binding energy
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Fig 1 | Fundamental physics of (A) laser propagation and (B) ionization by multiple photon
absorption

Table 1 | Properties of laser light

Monochromaticity The light emitted by a laser is tightly concentrated around a single
wavelength corresponding to the energy transition of the gain medium
Photons travel in the same direction, so the beam can travel long distances

with minimal spreading

Collumnation

Coherence The wavefronts of light are in phase in both space and time such that their
amplitudes add together for a more intense beam
Tunability The beam shape can be manipulated spatially and temporally to create

short or long pulses with wide or narrow focus

Table 2 | Processes in plasmas

Process Symbolic Reverse Process
Photoexcitation ny+Ma2M* Spontaneous emission
An atom (M) absorbs one or (n) several nhe/A<Eg Excited electron decays to

photons (y) of wavelength A raising an electron
within the atom to an excited state (M)

a lower energy state with
the emission of a photon

Radiative recombination
Electron and ion recombine
with the emission of a
photon

Photoionization

One or several photons of wavelength A have
sufficient energy to create an ion (M) and a
free electron (e)

ny+MT_’e + M
nhc/A=

= Bmdmg

e+Mze +M Collisional de-excitation
Electron inelastically
collides with an excited

atom, gaining kinetic energy

Collisional excitation

Free electron collides with an atom
transferring kinetic energy to the atomic
system

Collisional ionization e+Ma2e + M
Free electron collides with atom transferring

enough energy to release an additional

3 body recombination
Two electrons collide with
an ion and one is bound

electron
Bremsstrahlung e+M 2e +M +y Inverse bremsstrahlung
Free electron is slowed and its kinetic energy The absorption of a photon
is released as a photon in a continuum of by a free electron increases
energies its kinetic energy

E. ., anion and an electron are produced. Electron

Binding’
binding energies are typically a few to tens of electron

volts (eV) for outer shell electrons and up to thousands
of eV for inner shell electrons. The photon energies
of many commercially available lasers (i.e., ~1.17 eV
for Nd:YAG lasers at 1064 nm) are typically below the
threshold of ionization of many atoms; however, la-
ser pulses with intensities higher than 10° W/cm? are
generally able to ionize all states of matter via several
mechanisms described in Table 2. The absorption of
a photon or simultaneous absorption of n number of

photons can lead to ionization if nhe >E . 2 The
), inding®

process of multiple photon ionization is depicted in

Figure 1B, where an atom absorbs four photons to lib-
erate an electron.

LPP are highly dynamic transient systems. The rapid
absorption of laser energy by a target leads to vapor-
ization of solids and liquids and a shockwave of ions
expanding out from the focal spot of the laser. Laser
energy is directly absorbed through inverse brems-
strahlung, accelerating electrons to high energies."”
Fast free electrons create a cascade of ionization in col-
lisions with neutral or excited species.'” Excitations be-
low the ionization threshold still contribute to plasma
growth by raising electrons into higher energy levels
that have lower binding energies.' The average kinet-
ic energy of the electrons, also known as the electron
temperature, determines many properties of the plas-
ma. Ions typically have a lower kinetic energy due to
their higher mass, but they still contribute to the overall
plasma temperature. After the laser pulse terminates,
the expanding plasma cools through collisions, radia-
tive recombination, and bremsstrahlung emission. The
cooling plasma emits both light at distinct wavelengths
and in a continuum due to these processes." The radi-
ative properties of LPP have important implications in
the applications discussed below.

LPPs in Environmental Remediation

A high cost of industrialization is that a litany of pollut-
ants ranging from heavy elements' to toxic chemicals
with long lifetimes'®'” are constantly entering our air,
water, and soil. There are concerted efforts by govern-
ments and nongovernmental organizations around the
world to monitor levels of pollutants and remediate
them to prevent damage to humans and other organ-
isms."® One major growing concern is the widespread
presence of “forever chemicals” like per- and polyflu-
oroalkyl substances,"” which have rapidly spread in
biological systems and are likely carcinogenic.' LPPs
are increasingly being used as a monitoring tool to de-
tect both the level of contamination of certain contam-
inants®® and also an indirect means of remediation.”*

Contaminant Monitoring

The method of laser-induced breakdown spectrosco-
py (LIBS) utilizes short, intense laser pulses to heat a
small portion of the sample to tens of thousands de-
grees K, which is around 1 to several eV.”> Each element
within the sample emits light at distinct wavelengths
or “spectral lines,” such that analyzing the light from
the plasma allows for the detection of the atomic spe-
cies within (Figure 2). This monitoring method often
requires no sample preparation and is fast, and rela-
tively economical.”>** When preparation is required, it
can be as simple as grinding a heterogeneous solid and
then pressing it into a pellet or freezing a liquid sample
for an enhanced emission spectrum.” Firing a second
laser pulse into the plasmas also strongly enhances the
emission spectrum, especially for samples that are im-
mersed underwater.”*?®

2 DOI: https://doi.org/10.70389/PJS.100054 | Premier Journal of Science 2025;5:100054
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Fig 2 | Laser-induced breakdown spectroscopy

The ease or lack of preparation in LIBS allows for
faster monitoring of contamination and can enable a
more thorough analysis of the migration of contami-
nants than would be economically feasible with other
methods. Senesi et al. demonstrated that LIBS can be
used to track heavy metal contamination from the soil
into the roots and shoots of a plant used for bioremedi-
ation.”* They finely ground the soil and plant samples
and pressed them into pellets. The pellets were placed
in a rotating target holder to take multiple measure-
ments of one sample, each on a newly ablated surface
to assist reproducibility. When compared to the con-
ventional method of measuring the spectrum of an
inductively coupled plasma, LIBS was found in good
agreement, although the uncertainty was higher due to
the smaller sampling volume.*

There are some notable limitations of the LIBS sam-
pling method, some of which can be mitigated with
adequate sample preparation and experimental setup.
The laser’s tight focus has the benefit of being mini-
mally invasive, but this can also lead to sampling error
in bulk and heterogeneous materials because only a
small amount is sampled. The formation of deep craters
due to continuous ablation can lead to the enrichment
of certain elements over others within the sample.’
When possible, rotating the material while sampling
can mitigate these errors. The spectrum obtained from
a LIBS is highly dependent on the laser parameters
(wavelength, energy, and pulse profile), the sample
grain size and stoichiometry, and the background gas
composition and pressure.”” Understanding the plas-
ma dynamics, such as the relative abundance of excit-
ed species and their ionization degrees, gives insight
into selecting the most optimal spectral lines for LIBS
analysis. Machine learning-based approaches could
be applied here to provide real-time feedback on the
plasma parameter for improved measurement accura-
cy and consistency.’

Remediation

In addition to helping us understand the specific pol-
lutants contaminating an environment, LPP can also
play a significant role in breaking down and remov-
ing certain toxic and dangerous substances. Laser
breakdown generates reactive oxides and nitrides in
air as well as hydroxyl radicals in water. These reac-
tive species are effectively able to break down dyes,
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microbial contaminants and potentially PFAS.’'?

Lower-temperature plasma sources produced from
high-voltage discharge are currently favored for plas-
ma remediation applications as they are more energy
efficient in generating reactive species.

LPP can still play a role in remediation with the gen-
eration of nanoparticles and nanocomposites in their
ablated plasma plume.’' These particles with sizes of
less than 100 nm have distinct properties from bulk
material and effectively remediate various pollutants
due to their high reactivity and absorption capabili-
ties.’*** Varying the laser parameters such as the pulse
length and wavelength can even enable control over
the size distribution of the generated nanoparticles.
Scaling the nanoparticle size changes their effective
surface area, an important factor that affects their abil-
ity to remediate.’® Chakravarty et al. demonstrated that
lengthening the pulse duration of a 30 m] ultrashort
pulse laser shifted the size distributions larger for both
silver and copper nanoparticle.”” Metal nanoparticles
and their composites can play an important role in the
degradation of hazardous substances through catalyt-
ic reactions.® High capital and energy costs from pur-
chasing and operating laser equipment still hinder the
adoption of LPP for remediation.

Extreme Ultraviolet Semiconductor Lithography

Since the early computers of the 1960s, the number of
transistors on integrated circuits has increased expo-
nentially, doubling approximately every 2 years. This
rate of progress is known as Moore’s law. Modern chips
are manufactured through photolithography, a process
where a silicon wafer is imprinted with intricate pat-
terns through the use of light and photosensitive chem-
icals to create a network of transistors. To increase
computing power, it is essential to enhance transistor
density. However, the wavelength of the light used to
expose the wafer acts as a limiting factor, which can be
described by the formula: Resolution = kA/NA, where
k is an empirical parameter, A is wavelength, and NA
is the numerical aperture.’® To resolve the increasing-
ly smaller features on advanced chips, there is a de-
mand for short-wavelength light and, consequently,
high-energy photons.

Research into the generation of soft x-rays or ex-
treme ultraviolet (EUV) light, which falls within the
range of 10-30 nm, has been under development
since the 1980s.”*“° These early works used synchro-
tron radiation as a soft x-ray source, as well as LPP from
gold targets. Other sources of EUV include the sun, free
electron lasers, and ultrashort pulsed laser plasmas.
Highly ionized heavy metals have shown capabilities
for emitting EUV, with tin ultimately chosen as the
fuel source for future lithography due to its emission
peak at 13.5 nm (~92 eV) under intense laser irradi-
ation.*’ The short wavelength of EUV is absorbed by
most materials, including air and conventional optics.
However, multilayer mirrors of Si and Mo are capable
of reflecting EUV with up to 70% efficiency. Since the
imaging system of a lithography scanner implements
several mirrors, achieving a high source power of
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Fig 3 | Laser-produced plasma EUV light source, with an inset showing the laser droplet
interaction at the primary focus of the collector mirror

>250 W is required to deliver sufficient EUV to the wa-
fer. Accomplishing this has been a monumental feat of
engineering.

The commercial-scale EUV source was developed by
CYMER,* a company later purchased by ASML.** The
source is a laser produced tin plasma that is pulsed at a
high frequency with the EUV reflected by a large ellipsoid
multilayer collector mirror as depicted in Figure 3. Tin is
injected by a droplet generator using high-pressure inert
gas applied to a melted tin reservoir, forcing a stream of
microdroplets out of a small orifice. The spherical drop-
lets fly through the vessel, passing through metrology
lasers and cameras to precisely position the droplets
and fire the drive laser at the primary focus of the collec-
tor mirror. The drive laser is a CO, gas laser operating at
10.6 um that passes through a preamplifier and then four
high-powered amplifiers to achieve an average output
power of 30 kW. A “prepulse” first flattens the droplet
into a thin disk to improve energy coupling for the main
pulse, which heats the tin to plasma temperatures suf-
ficient for EUV generation.” The prepulse also prevents
excessive generation of macroparticle debris that can im-
plant on the collector mirror. H, gas is also flown through
the vessel to interact with tin ions and carry them out of
the vessel to preserve collector reflectivity.*

When a single droplet target is heated by ~600 m]
of laser energy, the plasma reaches electron tempera-
tures of 30-40 eV*® with tin ions reaching ionization
states of Sn'® - Sn'**, The plasma emits light in a

broad spectrum in all directions, but the commercial
process is only concerned with the emission of in-band
13.5 nm EUV directed back at the collector mirror,
which amounts to ~5 m] per pulse. To achieve the high
EUV power requirements of ~250 W needed for semi-
conductor production, this process is scaled to a high
repetition rate of 50 kHz. Stability must be maintained
in droplet size, spacing, and positioning, as well as in
laser power, pointing, and timing, in order to deliver
EUV within the dose requirements for semiconductor
production.***’

Research is underway to incrementally improve EUV
output and conversion efficiency. This is accomplished
with a separate 1 pm laser as the prepulse to form the
target.***’ Removal of the CO, prepulse prevents a back-
reflection from the droplet from entering the power am-
plifiers, negating a parasitic gain-loss mechanism.*
Laser gain is then reserved for use by the main pulse to
heat the plasma.*® Conversion efficiency is improved in
the way the short pulse and shorter wavelength of the
1 pm laser interact with the liquid droplet and more
effectively form a wide target to be heated by the main
pulse.”"*” Scaling the repetition beyond 50 kHz further
multiplies the EUV power increases. With these meth-
ods and additional laser amplification, research sources
have achieved stable EUV output at 600 W.*®

While the CO, gas laser was chosen for its industri-
al robustness at high repetition rates, these systems
are notoriously inefficient. The development of effi-
cient high-power diode lasers capable of firing at high
repetition rates could drastically reduce the energy
consumption of EUV systems. Incorporating magnetic
confinement of the plasma would further improve the
plasma heating and EUV conversion efficiency.”> Mag-
netic fields can also aid in debris mitigation by trapping
low-energy ions.’*** The development of lasers that gen-
erate coherent, directional EUV could offer even more
dramatic improvements by avoiding the inherent ineffi-
ciencies of mirror losses from the collector and through
the scanner. Such EUV lasers are possible through high
harmonic generation®®*” and free electron lasers.*®

Laser-Driven Inertial Confinement Fusion

The quest for controlled nuclear fusion has the po-
tential to provide a nearly limitless source of clean
and renewable energy. The fuel for the reaction is the
heavy isotopes of hydrogen: deuterium (D), containing
one proton and one neutron, and tritium (T), contain-
ing two neutrons. D, is a naturally occurring stable
isotope with an abundance of 1 D for every 6700 H
in natural water’® and is easily extracted.®® Tritium is
unstable and must be generated from neutron capture:
D + n — T.°** The conditions for fusion require that
the fuel has a combination of high temperature and
density to overcome the mutual repulsion of positive
nuclei, binding them into helium and a fast neutron:
D + T — He [3.5 MeV] + n[14.1 MeV]. The high-energy
neutrons escape the plasma and carry their energy
off to the chamber walls, which can serve as a tritium
breeding mechanism for future reactors. For the reac-
tion to produce net energy, the released alpha particles
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(He) must make sufficient collisions within the plasma
such that they add energy to the fuel and drive further
fusion events.

The Lawson criteria for ignition describes when the
self-heating from alpha particles exceeds the energy
input and cooling mechanisms.®® The laser’s ability to
generate hot, high-density plasmas has made them a
prime candidate for heating and compressing fusion
fuels to high densities needed to stop alpha particles
within the plasma. The concept has been in develop-
ment since the 1970s* with recent breakthroughs in
generating self-heating fusion output.®

The infrastructure to generate inertial confinement
fusion can be as simple as two opposing beams on a DT
target fired simultaneously to generate an implosion of
the fuel;** however, modern designs developed by the
National Ignition Facility (NIF) have become increas-
ingly more intricate by using 192 lasers to illuminate
the target with a higher degree of symmetry.*® The ap-
proach that has finally achieved Lawson’s criteria for
ignition uses an indirect drive pictured in Figure 4,
where the lasers couple energy to an outer shell called
a hohlraum—a high atomic number material that emits
a bath of x-rays. An inner capsule within the hohlraum

Xrays

/
N

Frozen DT
Ablator

Fig 4 | Indirect drive laser inertial confinement fusion

Infared Beam

Tl Ultraviolet Beam

Frequency
Converter

Fig 5 | Photon frequency conversion from infrared to ultraviolet to x-ray driving fusion
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houses the frozen and gaseous DT fuel within a thin
lining material. The x-rays ablate the capsule lining
inward and implode the fuel at a high velocity to gen-
erate a central hot spot where fusion begins and con-
tinues heating the surrounding fuel. Key developments
in achieving this feat include achieving an extremely
high-energy laser pulse with a tailored temporal profile
to drive compression and engineering the hohlraum
and capsule materials and geometries to efficiently ab-
sorb laser energy and mitigate instabilities that lead to
loss of compression and cooling of the plasma.®’

The NIF laser system and hohlraum upconvert the
frequency of the photons several times before they are
finally delivered to the DT target, as depicted in Figure 5.
Beginning with a single nanojoule-level infrared pulse
at 1053 nm, the beam is split several times and sent
through a series of glass amplifiers to reach a pulse
energy of 4 MJ. Near the target chamber, the infrared
beams are frequency tripled by passing through crystals
of potassium dideuterium phosphate to reach an ultra-
violet wavelength of 351 nm. The frequency conversion
incurs a ~50% loss of the beam’s power, but the higher
photon energies of the UV beams are more effective at
coupling their energy to the hohlraum.*®** In recent ex-
periments, 2.05 MJ of UV laser energy has heated the
hohlraum to a peak radiation temperature of 313 eV,
which emits soft x-rays in the EUV range. The fusion
output has been measured as high as 3.88 MJ in a shot
cataloged as N2307297° for a gain of energy approach-
ing 2. The fusion reaction reheated the hohlraum far
past the initial peak to nearly 350 eV, which is over 4
million celsius. Although this is a significant feat in the
long history of fusion research, further developments
are required to enable fusion as a viable energy source.
The energy required to actually generate and amplify
the laser pulse still eclipses the fusion output at over
300-400 MJ.”*”* The fusion output will need to increase
by a factor of over 100 to achieve true energy breakev-
en. Imposing a magnetic field along the hohlraum has
been shown to increase hotspot temperatures, although
these experiments must be conducted with constraints
of a lower laser energy of 1 MJ and room temperature
fuel that limits total fusion yield.” Further exploration
of laser-driven fusion within magnetic fields could lead
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to more breakthroughs in achieving the high fusion gain
needed for future reactors.

Conclusion
The utility of the laser and the plasmas it creates has
far-reaching applications across modern society. There
are still many other important applications of LPP that
have not been covered here: pulsed laser deposition
for thin film processing has implications for efficient
energy materials, x-ray generation for medical imag-
ing, and laser pair production for antimatter research,
to name a few. Converting the energy of an excited gain
medium into a concentrated light beam underpins
the laser’s operations. In applications, laser photons
are converted into a different form of desired energy
or emission within the plasma. Research in different
gain mediums and laser infrastructures has led to the
high-energy and short pulses that drive many LPP
applications. Expanding the available wavelength se-
lection of lasers could also lead to more novel applica-
tions. For environmental applications, LPP serves as an
effective tool with modest infrastructure requirements
for both monitoring levels of contamination and reme-
diating them. Combining laser-assisted remediation
methods with real-time monitoring of contamination
levels through LIBS could be an effective future avenue
for cleaning up highly contaminated waste streams.
Applications targeting higher-temperature plas-
mas require higher laser energy input. In lithography,
the EUV emitting plasma from firing multiple lasers
on tin droplets is an operational tool for printing ex-
tremely small features on advanced chips. In fusion
research, symmetric laser illumination heats a small
target to unleash an x-ray bath that rockets a fuel cap-
sule into itself in an effort to release even more ener-
gy. The addition of a magnetic field in both of these
applications offers a means of increasing the plasma
heating efficiency. From the seed laser pulse, through
power amplification, and onto target heating there are
loss mechanisms in each energy conversion step that
should be understood and minimized to improve effi-
ciency. Powering laser infrastructure with renewable
energy generation would offset their high energy de-
mand, and there are even prospects of using focused
sunlight as a laser pump.’* Further improvement in
laser efficiency and plasma production would lead to
a smaller environmental footprint of LPP technologies
and expand the feasibility of laser-based solutions.
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