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ABSTRACT
Psoriasis, an incurable immune-mediated inflam-
matory skin illness, greatly affects patients’ physical 
and emotional health. Genetics, epigenetics, environ-
mental variables, and unbalanced immune cells such 
as T cells, dendritic cells (DCs), and keratinocytes 
cause psoriasis. The immune system plays a major 
role in psoriasis, yet it lacks well-defined antigens, 
autoimmune genetic risk factors, and particular anti-
bodies. Psoriasis is an autoinflammatory illness due 
to molecular and cellular features like neutrophils in 
skin lesions and innate immune system stimulation. 
High-molecular-weight protein complexes known as 
autoinflammatory inflammasomes frequently occur in 
autoinflammatory diseases, genetic disorders char-
acterized by recurring fever, higher acute-phase reac-
tants, and organ inflammation. Immune cells organize 
these inflammasomes in their cytoplasm. They start 
inflammatory processes like making mature IL-1β, IL-
18, caspase-1, and pyroptosis. Recent research has 
focused on immune response triggers rather than auto-
immune psoriasis. Researchers have specifically linked 
NLRP1, NLRP3, and AIM2 inflammasomes to psoriasis. 
Identifying activators, inhibitors, genetic susceptibility 
regions, and inflammasome-related genes in psoriasis 
provides useful insights. This systematic review gath-
ers recent and thorough research on inflammasomes 
and psoriasis to better understand this complex skin 
disorder’s pathogenesis.
Keywords: AIM2, Inflammasome, NLRP1, NLRP3, 
Psoriasis, Autoinflammatory disorder

Introduction
Psoriasis, a diligent and fiery skin condition, is believed 
to result from a combination of inherited and natu-
ral factors.1–2 Psoriasis manifests as textured reddish 
plaques due to intemperate growth and atypical sepa-
ration of keratinocytes. Psoriasis affects approximately 
2% to 4% of the population worldwide.3–5 In addition to 
skin-related issues, persons with psoriasis may confront 
an expanded possibility of cardiovascular malady, dia-
betes, joint ache, sorrow, and indeed cancer.6–10 These 
connected wellness difficulties collectively impact the 
physical and emotional well-being of individuals with 
psoriasis, leading to significant socioeconomic and psy-
chological responsibilities (Figure 1).11,12

Methods
This review is based on a narrative search of the lit-
erature rather than a systematic or PRISMA‑guided 
approach. Searches were conducted across PubMed, 
Scopus, Web of Science, EMBASE, and Google Scholar, 
focusing on publications from 2010 to 2024. Search 

terms included “psoriasis,” “inflammasome,” “AIM2,” 
“NLRP3,” “NLRP1,” “keratinocyte inflammasome,” 
and “myeloid inflammasome.” Relevant peer‑reviewed 
experimental studies, clinical studies, and mechanis-
tic reviews were included based on thematic relevance 
to inflammasome biology and psoriasis pathogenesis. 
Non‑English articles, non‑peer‑reviewed literature, 
and studies unrelated to inflammasome pathways 
were excluded. The goal of the narrative search was to 
summarize current mechanistic understanding of ca-
nonical and non‑canonical inflammasome pathways 
in psoriasis, with emphasis on keratinocyte‑driven 
AIM2 and NLRP1 activation and myeloid‑driven 
NLRP3 signaling.

Psoriasis may be a complex condition characterized 
by dynamic interactions between keratinocytes, safe 
cells, and various skin cells, including endothelial 
cells.13,14 When the growth and separation of keratino-
cytes don’t happen properly, the epidermis gets bigger 
and resistant cells, especially dendritic cells (DCs) and 
T cells, obtain inside it deeply. Some of the most im-
portant things about psoriasis are thicker skin capillar-
ies and numerous different chemokines and cytokines 
that cause it.15–17 The crucial role in the progression 
of the disease lies in the interaction between resistant 
cells and keratinocytes, which is primarily mediated 
by interleukin (IL)-17. While IIL-17, IL-23, and tumor 
necrosis factor (TNF) are essential cytokines in the 
growth of psoriasis, the enactment of the multi-protein 
inflammasome complex plays a more prominent role 
in its pathogenesis. This actuation is connected with 
an increased generation of IL-1β and IL-18.18–20

Autoinflammation
It is considered an immune system reaction, developing 
from the over-the-top enactment of the safe framework 
and presenting a clinical phenotype imprinted by sub-
stituting phases of compounding and abatement.21–24 
It is well-established that there is a close connection 
between intrinsic and versatile resistive responses, 
and any disarray in this environment stems from an 
awkwardness between these two components.25–28

The fundamental qualifications for the dysregula-
tion of these immune system compartments are found 
within the incorporated components and cells. As ex-
pected, autoimmune pathogenesis comprises a glitch 
in flexible insusceptibility, driving the creation of au-
toantibodies with the cooperation of T and B cells.29–31 
In contrast, autoinflammation fundamentally locks in 
the intrinsic immune system and presents fiery scenes 
without the nearness of autoreactive T cells and tower-
ing autoantibody levels.32
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In particular, cells of the natural resistant frame-
work, like epithelial and dendritic cells, polymorpho-
nuclear leukocytes, and macrophages, play two roles 
when the immune system is sick. They not only oper-
ated as a rapid barrier to the fiery process however ad-
ditionally worked as effectors within the movement of 
the fiery reaction. This audit focuses fundamentally on 
the potential role of the inflammasome in the patho-
physiology of psoriasis.33

Inflammasomes
The inflammasome could be a high-molecular-weight 
protein complex that massively amasses within the cy-
toplasm of stimulated resistant cells. Upon actuation, it 
sets off a cascade of provoking occasions, leading to the 
age of dynamic caspase-1.34–38 This dynamic caspase-1, 
in turn, supports the formation of pro-inflammatory 
cytokines such as Interleukin-1β (InL-1β) and IL-18, 
and starts a shape of modified cell passing known as 
pyroptosis. Recognized as a critical component of the 
intrinsic resistant framework, the inflammasome can 
notice components of irresistible specialists or tissue 
injury.39–42 Various examines have uncovered the as-
sociation of distinct inflammasomes with both innate 
and acquired autoinflammatory disorders. Over the past 
decades, extensive evidence has enlightened the part 
of the inflammasome and its constituents inside the 
etiology of numerous skin disorders.43 Examinations 
reveal that the connect between the inflammasome and 
psoriasis essentially derives from its association with 
pro-inflammatory cytokines.44–46 An inflammasome 
is an integral part of the intrinsic safety framework; it 
forms an intracellular complex that binds to pathogens 
and sets off a chain reaction to destroy them.47–49

Different kinds of inflammasomes incorporate.50,51

•	 The nucleotide-binding oligomerisation space 
(NOD)-like receptor (NLR) P3 inflammasome.

•	 The absent in melanoma 2 (AIM2) inflammasome
•	 The NLRC4 inflammasome.
•	 An atomic design acknowledgment receptor (PRR).

The ASC connector protein and caspase-1 chemical 
synthesize up the apoptosis-associated speck-like pro-
tein.27,52,53 Inflammasome action is linked to chronic 
fiery clutters, and growing evidence in blocked tis-
sues implies a role in psoriasis progression.54,55 In the 
first study, psoriatic injuries had a 20-fold increase in 
caspase-5 mRNA and a clear increase in caspase-1 and 
other inflammasome-related transcripts.56–58

Studies demonstrate greater NLRP3, NLRP1, 
and AIM2 levels in psoriatic skin.55,59–61 Hereditary 
information links NLRP1, NLRP3, and AIM2 polymor-
phisms are associated with psoriasis, while inflam-
masome-related polymorphisms are linked to joint 
pain.59–64 Psoriatic epidermal samples and full-thick-
ness skin exhibit a higher expression of NLR signature 
genes.65–69 A later study demonstrated greater periph-
eral blood inflammasome activity in psoriasis pa-
tients, suggesting systemic irritation.70–73 Researchers 
found that people with psoriasis had higher amounts 
of IL-1β, IL-18, and the inflammasome sensors NLRP3, 
NLRP1, and AIM2 in their peripheral blood cells. 
Their caspase-1 activity was higher. IL-1 stimulated 
human and model Tcells to produce IL-17. TNF-α reg-
ulates NLRP3 inflammasome component translation 
in mouse models.74,75 TNF-α exposure dramatically 
boosts NLRP3 and pro-IL-1β expression. Research 
indicates that TNF-α can activate the NLRP3 inflam-
masome without a flag. TNF-blocking medications nor-
malize IL-1, IL-18, and caspase 173 activity (Figure 2).

Although the specific etiology is unknown, incen-
diary reactions and aberrant safe cell activation are 
thought to produce psoriasis.76,77 When intracellular 
signaling pathways and inflammatory substances 
are overactive, safe cells synthesize more cytokines. 
These cytokines boost translation factors and synthe-
size epidermis and psoriasis worse. Psoriasis advanc-
es as a result of TLRs, particularly TLR7/8, inhibiting 
the start of the response. TLR signaling recruits con-
nector proteins and MyD88. A pathway dependent 
on MyD88 creates nuclear factor-κB, which triggers 
inflammatory cytokines and boosts TLR7/8-MyD88-
NF-κB signaling, leading to long-lasting inflamma-
tion. Because of NLRP3, caspase-1, and an ASC, the 
NLRP3 inflammasome is vital to TLRs. Cytoplasmic 
macromolecular complex.78,79 During activation of 
the NLRP3 inflammasome, IL-1β is produced, and 
ASC and caspase-1 are activated. Psoriasis improves 
with inflammation. TLR7/8-My88-NF-κB and NLRP3 
pathways contribute to psoriasis onset and progres-
sion.63,80 Psoriasis therapies today include topicals, 
systemics, and phototherapy. These procedures often 
lead to relapses and pharmaceutical side effects. The 
compulsive components of psoriasis remain poorly 
understood, necessitating safe, effective, and globally 
approved treatments. Therefore, it is crucial to find 
psoriasis specialists who can minimize side effects.
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Fig 1 | Types of psoriasis
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Narrative of Inflammasomes
Dr. Jurg Tschopp and colleagues27 initially used the “in-
flammasome,” formerly known as NLRP1, to describe a 
“caspase-activating complex” that included caspase-1, 
caspase-5, Pycard (the caspase interaction domain), 
and NALP1.81–84 It was later discovered that this NLRP1 
inflammasome has a role in the creation of IL-1β. Two 
years down the road, the identical group of research-
ers found the NLRP3 inflammasome; since then, it has 
risen to the position of most-studied inflammasome 
thanks to its roles in innate and adaptive immunity. 
There are many things that can activate NLRP3, such 
as infectious agents like fungi, bacteria, and viruses, as 
well as endogenous substances like fibrillar amyloid-β 
(Aβ) peptide, extracellular ATP, and glucose.85–90 Poyet 
et al. discovered another inflammasome, initially 

known as IPAF however later renamed NLRC4 due to 
structural similarities to other NLR proteins.

Different research groups used different methods 
to independently identify the AIM2 inflammasome. 
Different techniques were used to find AIM2, which is 
controlled by IFN-β and linked to DNA. These included 
mass spectrometry, electromobility shift tests, and ge-
nome screens. Our results show that the HIN-200 family 
member AIM2 can activate caspase-1 and caspase-3. We 
highlighted the ability of the therefore-called “canonical 
inflammasomes,” which include AIM2, NLRP1, NLRP3, 
and NLRC4, to trigger caspase-1 action.86–90

The “noncanonical” inflammasome, only recently 
discovered, activates caspase-11 in mice and caspase-4 
and caspase-5 in humans in response to LPS.91 One key 
difference between canonical and noncanonical in-
flammasomes is that the latter do not trigger caspase-1 
activation. The GSDMD is broken, and pyroptosis be-
gins by creating holes in the cell membrane, which is 
accomplished by activating caspase-11 in mice and 
caspase-4/5 in humans (Table 1).92–95

In conclusion, the discovery and study of new 
complexes has expanded our knowledge of inflam-
masomes. All of them have contributed to our under-
standing of innate immune responses and their role in 
inflammatory processes.

The extensively researched inflammasome com-
plex, additionally known as the nucleotide-binding 
domain leucine-rich repeat (NLR) and pyrin do-
main-containing receptor 3 (NLRP3), consists of 
NLRs, an apoptosis-associated speck-like protein that 
includes a caspase recruitment domain (ASC), and 
caspase-195,100. Many extracellular inflammatory 
stimuli, such as bacteria, viruses, pathogen-associated 
molecular patterns (PAMP), and damage-associated 
molecular patterns (DAMP), can indirectly activate 
NLRP3. However, the precise molecular pathways 
beginning NLRP3 activation remain insufficiently 
understood. Several stress factors, such as K+ efflux, 
intracellular Ca2+, extracellular ATP, mitochondrial 
malfunction, reactive oxygen species (ROS), and ly-
sosomal rupture, control the activation of the protein 
complex.123–128

When NLRP3 is activated, it starts caspase-1, which 
cuts pro-IL-1β and pro-IL-18 into active IL-18 and IL-
1β. New research demonstrates that NLRP3 controls 
the splicing of gasdermin D (GSDMD) by turning on 
caspase-1, which splits the protein into two pieces 
called the C and N domains. The N-terminal segment 
(GSDMD-N) assembles to generate pores on the plas-
ma membrane, triggering pyroptosis. Hence, GSDMD 
is considered a critical component of NLRP3. In ad-
dition, caspase-11 directly contributes to pyroptosis 
by cutting the GSDMD membrane-forming protein, 
which then activates the canonical NLRP3 and releases 
cytokines.124,125

A major factor in the development of psoriasis is an 
abnormal activation of the immune system. This has 
led to more research being done on the role of NLRP3 
inflammasome activation. Studies confirm that the de-
velopment of the NLRP3 inflammasome contributes to 

Fig 2 | The TLR7/8–MyD88–NF-κB pathway promotes NLRP3 and AIM2 inflammasome 
activation by inducing transcription of pro-IL-1β, pro-IL-18, and inflammasome 
components. TLR7/8 stimulation activates MyD88, leading to NF-κB signaling and 
priming of the inflammasome (“signal 1”). Subsequent cellular stress or pathogen 
DNA provides the activation signal (“signal 2”) that triggers NLRP3 or AIM2 assembly, 
caspase-1 activation, and release of IL-1β and IL-18. Thus, TLR7/8-MyD88-NF-κB 
signaling primes, while NLRP3 and AIM2 pathways execute, the inflammatory response
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the inflammatory response in psoriasis. In psoriasis 
samples, NLRP3 expression was four times higher 
than in normal skin biopsies. Additionally, psoriasis 
samples had IL-1 expression levels approximately 3–4 
times higher than normal skin biopsy specimens, and 
caspase-1 expression significantly increased, reach-
ing 2–3 times higher levels than normal skin biop-
sies.126–127

A year earlier, researchers found similar data in an 
experimental mouse model of imiquimod-induced 
psoriasis-like dermatitis, where skin samples 
showed NLRP3 activation and higher levels of pNF-B 
expression.1

Recent research has shown that IL-18 and ASC pro-
teins are much more abundant in people with psori-
asis than in healthy controls. This suggests that they 
may be important biomarkers for diagnosing psoriasis. 
The fact that IL-18 and ASC proteins are linked to each 

other demonstrates how important they are in the in-
flammatory responses that lead to psoriasis.108,129

NLRP1 in Psoriasis
Another NLRPD family member, NLRP1, is in charge 
of forming an individual’s inflammasomes. The atomic 
mechanisms behind its activation and the events that 
followed are still not fully known, despite the fact that 
it was the most investigated inflammasome.109,129,130 
The changes found in NLRP1 in people with different 
skin diseases show how complexly NLRP1 activation 
is controlled. This highlights the skin’s important 
role and vulnerability to chronic inflammatory con-
ditions.131,132 We used single nucleotide polymor-
phism analysis to find genetic variants in the NLRP1 
inflammasome complex that are linked to a higher 
risk of getting psoriasis. These variants are rs878329, 
rs12150220, rs8079034, and rs6502867. They found 

Table1 | Inflammasomes detect danger signals via specific ligands to trigger inflammation. NLRP3 responds to ATP, nigericin, and crystals; AIM2 to 
cytosolic DNA; NLRC4 to bacterial flagellin; NLRP1 to anthrax toxin; NLRP6 to microbial metabolites; NLRP12 to bacterial lipoproteins; and IFI16 to 
viral DNA. These activations lead to caspase-1 activation, IL-1β/IL-18 release, and pyroptosis, crucial for immune defense
Types of Cells Functions of Inflammasome in Immune cells References

NLRP3 NLRP1 AIM2
CD4+Tcells It releases IL-1β, and promote IFN-γ NLRP1 serves as an inhibitory 

modulator of Th17 cell 
development in both mice 
and humans experiencing 
autoimmune diabetes.

It shows CD4+Tcells in mouse as well as human 
and it is managed by TCR Activation, In Th-cell 
differentiation no Specific effect. 

96–101

CD8+Tcells Initiates the NLRP3 inflammasome in 
antigen-presenting cells (APCs) through 
an antigen-dependent process to facilitate 
the maturation of IL-1β. The involvement 
of perforin released by antigen-specific 
cytotoxic T lymphocytes (CTLs) is essential for 
activating the NLRP3 inflammasome in APCs.

NLRP1 functions as an 
inhibitory modulator of Th17 
cell development in both mice 
and humans experiencing 
autoimmune diabetes.

AIM2 identifies damage-associated molecular 
patterns (DAMPs), generates inflammatory cytokines, 
and enhances the proliferation and activity of CD8+ 
cells.

101, 105–107

B cells It releases IL-1β,
Production of IgM  _

IFN-γ and CD28+ B cells can activate AIM2, as 
evidenced by the release of IL-1β secretion in primary 
B cells stimulated with synthetic dsDNA, along with 
the production of caspase-1 at reduced activity 
levels.

104, 109–110

Keratinocytes BAY 11-7082 alleviates the NLRP3 and dual 
NF-kB, and release of IL-1β, IL-18

Release of IL-1β, IL-18 in 
NLRP1 inflammasome and 
activated isostearic acid in 
cultured keratinocytes.

NETs – activated AIM2 in keratinocytes not only it 
promotes IL-β release through the inflammasome 
pathway but also promotes IFN- γ production by 
X-Linked inhibitor of apoptosis protein (XIAP).

111–113

Dendritic cell CAG markedly diminished the imiquimod-
induced NLRP3 release of IL-1β and initiated 
gasdermin D (GSMD)-mediated pyroptosis.

 
 _

In psoriasis, AIM2 initiates caspase-1-dependent 
inflammasome signaling, leading to the release of IL-
18 and IL-1β. The inflammatory response of AIM2 can 
synergize with the IFN-γ produced by plasmacytoid 
dendritic cells.

111–114

Macrophages Activation of NLRP3 signaling in 
macrophages induces the development 
of CD4+ T cells into tumor-promoting T 
helper type 2 cell (Th2 cell), Th17 cell, and 
regulatory T cell populations, concurrently 
inhibiting Th1 cell polarization and activation 
of cytotoxic CD8+ T cells. The inhibitory 
impacts of NLRP3 signaling are contingent on 
the presence of IL-10

NLRP1 undergoes 
N-terminal proteolysis, 
triggering pyroptosis in 
macrophages and eliciting 
a pro-inflammatory cytokine 
response.

Organelle, pathogen respond to AIM2, efficient 
macrophage to release IL-18 and IL-1β inducing Th 
adaptive immune system.

115–118

Neutrophils Activation of NLRP3 in neutrophils triggers 
the production of pro-inflammatory cytokines 
and chemokines in the liver. This activation 
also results in the infiltration of neutrophils 
and macrophages into the liver, along with an 
elevated incidence of cell death.

Improving neurological 
function and decreasing 
NLRP1-induced neuronal 
death are achieved through 
the depletion of neutrophils

Elevated levels of ASC, AIM2, and caspase-1 in 
neutrophils can induce GSMD-mediated pyroptosis. 
The AIM2 inflammasome signaling pathway, 
triggered by infection, releases IL-1β from infected 
cells and enhances IL-17 release by Th cells. This, in 
turn, stimulates the production of chemokines and 
recruits additional neutrophils into the inflammatory 
microenvironment. 

119–122
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that psoriasis is associated with over transmission of 
the NLRP1 rs878329C and rs8079034C genotypes. 
Additionally, research found a high correlation be-
tween psoriasis and polymorphisms in the NLRP1 
gene. An earlier diagnosis of psoriasis was associated 
with homozygosity for the rs878329C variation. In 
the peripheral blood of psoriasis patients, research-
ers detected increased levels of circulating IL-18 and 
NLRP1 mRNA expression. They additionally discov-
ered a correlation between the rs878329C allele and 
higher levels of circulating IL-18. These findings clear-
ly suggest that the NLRP1 inflammasome has a role 
in the development and course of psoriasis.132,133 The 
authors of another paper talked about how important 
the NLRP1 inflammasome is for human keratinocytes’ 
ability to recognize UVB and then synthesize IL-1β 
and IL-18. According to their findings, NLRP3 is the 
main inflammasome in myeloid cells, while NLRP1 is 
the main inflammasome in keratinocytes. Researchers 
linked psoriatic arthritis (PsA) patients to a genetic 
variation in the inflammasome-related gene CARD8-
C10X (rs2043211). Researchers linked different PsA 
symptoms to different inflammasome gene variations, 
however not to NLRP1 or NLRP3.

AIM2 in Psoriasis
It is part of a group of cytosolic innate immune re-
ceptors that can find cytosolic double-stranded DNA 
(dsDNA) from bacteria, viruses, and even its own DNA. 
When AIM2 finds dsDNA, it speeds up the formation 
of the inflammasome, which releases the cytokines IL-
1β and IL-18, which cause inflammation. AIM2 plays a 
vital function in host defense against numerous patho-
gens and may contribute to immune system or auto-
inflammatory diseases. Melanocytes and Langerhans 
cells in healthy epidermis normally express AIM2. 
However, inflammatory disorders such as atopic der-
matitis, allergic contact dermatitis, and psoriasis dra-
matically enhance AIM2 expression in keratinocytes. A 
study by Dombrowski et al. discovered that in psoriatic 
lesions, cytosolic DNA activates AIM2 inflammasomes 
only in keratinocytes, which makes proinflammato-
ry cytokines. They observed no such phenomenon in 
healthy lesions. Psoriasis triggers the activation and 
suppression of AIM2 and the NLRP3 inflammasome. 
We still don’t know the source of cytosolic DNA in pso-
riatic keratinocytes, however one hypothesis suggests 
that cytosolic AIM2 may recognize extracellular DNA 
from dying cells, leading to sterile inflammatory skin 
disorders.134 Extracellular self-DNA, which is usually 
removed by deoxyribonuclease (DNase), may combine 
with the germ-killing peptide cathelicidin LL-37 in pso-
riasis, which could lead to the disease. Dombrowski 
et al. studied the role of LL-37 in DNA-induced inflam-
mation and postulated that the interaction between 
LL-37, abundantly expressed in psoriatic skin, and 
cytosolic DNA might contribute to AIM2-dependent in-
flammasome activation.134

In any case, researchers discovered that when the 
LL-37-DNA complex internalizes into the cytosol, it 
loses its ability to perform the AIM2 inflammasome.

In psoriatic injuries that haven’t been treated, the 
AIM2 inflammasome was still activated, even though 
LL-37 levels were higher. This suggests that the levels 
of LL-37 in untreated psoriasis may not be enough 
to control AIM2 inflammasome activity. Treatments 
such as UVB radiation or neighborhood vitamin D 
analogs, which are known to enhance cutaneous vi-
tamin D amalgamation, stimulated the expression of 
cathelicidin in damaged skin, thereby reducing skin 
aggravation. These studies not only show how well 
UVB and vitamin D therapy work, however they addi-
tionally suggest that anti-psoriatic drugs that affect in-
flammasomes, especially AIM2, could be used to treat 
cathelicidin LL-37.

Certainly, the pro-inflammatory cytokine IL-1β plays a 
major role in the genesis of numerous scorching skin ail-
ments, including psoriasis. In general, keratinocytes from 
murine models don’t synthesize IL-1β. Instead, they syn-
thesize the cytokine IL-18, which can be changed into its 
active form by inflammasomes in these cells. The fact that 
cathelicidin LL-37 interacts with DNA and is more abun-
dant in people with psoriasis suggests that LL-37–DNA 
intelligence may assist turn on AIM2-dependent inflam-
masomes.123 Elicidin mRNA expression in skin damage 
significantly increased in psoriasis patients compared 
to healthy individuals, suggesting a possible role in the 
pathogenesis of psoriasis.124

Dermal cathelicidin LL-37 binds to self-DNA and 
activates dermal plasmacytoid dendritic cells, which 
leads to inflammation of the skin. Conversely, epider-
mal LL-37 in keratinocytes binds with cytosolic DNA, 
potentially inhibiting its pro-inflammatory activities.134 
This distinction may explicate the efficiency of vitamin 
D3, a major inducer of cathelicidin production in kera-
tinocytes and monocytes, in treating psoriasis and low-
ering inflammation in psoriatic lesions.131 Members of 
the Toll-like receptor (TLR) superfamily, critical in both 
innate and adaptive immune responses, contribute to 
the pathogenesis of psoriasis. In animal models, injec-
tions cause symptoms similar to psoriasis, and treat-
ment with TLR-7, –8, and –9 antagonists lessens skin 
lesions related to psoriasis, lowers the expression of 
NLRP3 and AIM2 in the dermis, and lowers the produc-
tion of Th1 and Th17 cytokines in both the skin and 
serum. This highlights the potential of inflammasomes 
as therapeutic targets for psoriasis treatment.19 Focus-
ing on stopping the activation of AIM2 inflammasomes 
in psoriasis, researchers showed in 2020 that red vine 
leaf extract (EFLA 945) may stop the activation of AIM2 
and other inflammasomes, highlighting its potential as 
a psoriasis treatment (Table 2).134

The Vital Role of NF-κB and TNF-α in Psoriasis
NF-κB and TNF-α are key drivers of the inflammation 
seen in psoriasis. These molecules play important roles 
in starting and maintaining the disease by triggering 
a chain reaction of immune responses. NF-κB is a pro-
tein that acts like a switch, turning on genes involved 
in inflammation and immune activity. It gets activated 
when the body detects stress, harmful microbes, or in-
flammatory signals like TNF-α. When NF-κB is turned 
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on, it moves into the cell nucleus and tells other mol-
ecules to synthesize substances that cause inflam-
mation, like TNF-α, IL-1β, and IL-6. This leads to the 
buildup of immune cells in the skin, fueling ongoing 
inflammation.

In psoriasis, this system becomes overactive. In skin 
cells (keratinocytes), NF-κB drives excessive growth 
and abnormal behavior, creating the thick, scaly 
patches typical of psoriasis. In immune cells like T 
cells and dendritic cells, NF-κB controls the release of 
inflammatory molecules like IL-23 and IL-17, which 
are central to the disease’s chronic nature.

TNF-α, a key protein influenced by NF-κB, makes this 
problem worse. It is overproduced in psoriatic skin and 
blood, creating a vicious cycle: TNF-α activates NF-κB, 
and NF-κB increases the production of TNF-α. This cy-
cle causes skin cells to grow too quickly, attracts more 
immune cells to the area, and keeps the inflammation 
going. TNF-α additionally spreads inflammation to 
other parts of the body, which can lead to related con-
ditions like heart disease, diabetes, and arthritis.

This connection between NF-κB and TNF-α explains 
why they are major targets for treating psoriasis. Block-
ing these molecules can interrupt the cycle of inflam-
mation, reduce skin symptoms, and lower the risk of 
other health problems linked to the disease.133,134

Discussion
Inflammasomes, particularly the NLRP3 inflam-
masome, are important contributors to the develop-
ment of plaque psoriasis. These complexes trigger the 
production of inflammatory proteins such as IL-1β 
and IL-18, which are responsible for the inflammation 
that is observed in this illness. The overactive NLRP3 
inflammasome causes plaque psoriasis by increasing 
inflammation. This accelerates the growth of skin cells 
and attracts immune cells to the area, exacerbating 
the condition. This mechanism additionally increases 
the activity of other inflammatory pathways, such as 
the Th17 response, which plays a significant role in 
the development of psoriatic plaques. Treatments that 
focus on inflammasome activity have shown potential 
in lowering inflammation and relieving symptoms. 
This emphasizes the significance of inflammasomes 

in plaque psoriasis and lends credence to the notion 
of targeting them as a component of therapeutic treat-
ments.

Conclusion
In conclusion, the inappropriate functioning of specif-
ic inflammasomes, such as AIM2, NLRP3, and NLRP1, 
is a major factor in the development and aggravation of 
psoriasis. These inflammasomes are protein complex-
es that enhance inflammation in the skin by generating 
chemicals such as IL-1β and IL-18. They additionally 
interact with other key pathways, such as NF-κB and 
TNF-α, which further contribute to the inflammation. 
NF-κB is responsible for the production of more in-
flammatory chemicals, while TNF-α not only activates 
the inflammasome however is additionally increased 
by it, resulting in a cycle of continuous inflammation. 
There is still a lot to learn about how these inflam-
masomes function in psoriasis, particularly in terms of 
how they interact with one another and with pathways 
such as NF-κB and TNF-α. Our understanding of these 
relationships may assist us develop more effective and 
personalized psoriasis treatments. We are getting clos-
er to discovering novel and innovative treatments for 
psoriasis and improving the lives of those who have 
it by investigating the role of inflammasomes in this 
chronic skin condition.

Abbreviation
PsA - Psoriasis arthritis
DCs - Dendritic cells
Caspase-1 - Cysteinyl aspartate specific proteinase - 1
IL-1β - Interleukin -1β
IL-18 -Interleukin -18
IL-23 - Interleukin -23
NOD - Nucleotide binding oligomerization domain
NLRP1 - Nucleotide binding oligomerization domain 
(NOD) likereceptor family pyrin domain containing 3
NLRP3 - Nucleotide binding oligomerization domain 
(NOD) like receptor family pyrin domain containing 1
AIM2 - Absent in Melanoma 2
TNF - Tumor necrosis factor
TRAF3 - Tumor necrosis factor receptor like associated 
factor 3
TRAF6 - Tumor necrosis factor receptor like associated 
factor 6
PPP - Psoriasis pustulosa palmoplantaris
ASC - Apoptosis associated speck like protein con-
tained a caspase recruitment domain
TLR 7/8 - Toll like receptor 7/8
MyD88 - Myleoid differentiation primary response 
gene 88
IKK - Inhibitor of nuclear factor-κβ(Iκβ) kinase
NF-κB - Nuclear factor κβ
IKB - Inhibitor of nuclear factor-κβ
GSDMD - Gasdermin-D
GSDMD-N - Gasdermin-D N-terminal fragment
Aβ - Amyloid β peptide
IPAF - Ice protease-activating factor
IFN-β - Interferon-β
HIN-200 - hematopoietic expression, interferon- 
inducible nature, and nuclear localization

Table 2 | Various types of regulators, activator, inhibitor and inducer of inflammasome
Inflammasome Regulator Activator Inhibitor Inducer References
AIM2 PK2 Cytoplasmic DNA 

Poly(dA-dT)
EGCG - 131

CARD18 IFN-α, IFN-γ EFLA945 - 112
AURKA - Obovatol - 127
TLR7,8,9 - WFA - 128
Fra-1 - RGFP966 - 129

NLRP3 - CD100-PIXnB2 Rosmarinic 
Acid Poly(I:C)

IMQ AC-YVAD-
CMK

130

- miR-155 EPD IMQ 131
- IL-17, IL-22 CAG ATP, βzATP, 

POM1, A438079
132

- - IMQ BAY11-
7082

- 108

NLPR1 Isostearic Acid - 128
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LPS - Lipopolysacride
APCs - Antigen-presenting cells
CTLs - Cytotoxic T lymphocytes
IgM - Immunoglobulin M
Th1 Cell - Type 1 T helper cells
Th2 cell - Type 2 T helper cells
Th17 cell - Type 17 T helper cells
pDcs - Plasmacytoid dendritic cells
DAMP - Damage-associated molecular patterns
PAMP - Pathogen-associated molecular patterns
PK2 - Prokinetic 2
CARD-18 - Caspase recruitment domain family mem-
ber 18
EGCG - Epigallatechin gallate
CD4 - Cluster of differentiation 4
CD8 - Cluster of differentiation 8
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